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We estimated mutational variance–covariance matrices, M, for wing shape and size in two genotypes of Drosophila melanogaster

after 192 generations of mutation accumulation. We characterized 21 potentially independent aspects of wing shape and size using

geometric morphometrics, and analyzed the data using a likelihood-based factor-analytic approach. We implement a previously

unused analysis that describes those directions with the greatest difference in evolvability between pairs of matrices. There are

significant mutational effects on 19 of 21 possible aspects of wing form, consistent with the high dimensionality of standing

genetic variation for wing shape previously identified in D. melanogaster. Mutations have partially recessive effects, consistent

with average dominance around 0.25. Sex-specific matrices are relatively similar, although male-specific matrices are slightly larger,

as expected due to dosage compensation on the X chromosome. Genotype-specific matrices are quite different. Matrices may differ

both because of sampling error based on small samples of mutations with large phenotypic effects, and because of the mutational

properties of the genotypes. Genotypic differences are likely to be involved, as the two genotypes have different molecular

mutation rates and properties.
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That mutation is critical to evolution is a truth universally ac-

knowledged, yet until very recently nearly every paper on muta-

tion could ruefully note how understudied mutation was. In one

key respect this situation has changed: The drop in sequencing

costs and increase in accuracy has made it relatively easy to es-

timate the base pair mutation rate by sequencing genotypes with

known evolutionary histories (Schrider et al. 2011). The impor-

tance of mutation for evolution, however, is not principally in its

molecular details. The phenotypic and fitness effects of mutations

and the rate at which they arise are ultimately most important for

the study of phenotypic variation, adaptation, and diversification.

Although the study of genotypic effects of mutation has now been

relocated to the well-lit upper floors of biology, mutation’s phe-

notypic effect is still in the “dingy basement” where Hermann

Muller found it in 1921 (Muller 1973).

The reasons that the phenotypic effects of mutation are less

well studied are easy to discern: measuring phenotypes is time

consuming, and particularly large sample sizes are necessary

for estimates of genetic parameters. Although the investment

in genomics has made the study of sequence variation orders

of magnitude easier, there has been no comparable investment

in phenomics, the high-throughput measurement of phenotypes

(Houle et al. 2010). Phenotypic effects of individual mutations

have been measured in a few simple organisms (e.g., Sanjuán et al.

2004), and attempts to connect specific spontaneous mutations

with phenotypic effects are beginning to be made in multicellular
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organisms (e.g., Rutter et al. 2012), but serve mainly to highlight

the difficulties of connecting genotype and phenotype.

What we can study are the aggregate effects of mutations

accumulated over may generations in mutation–accumulation ex-

periments (Houle and Kondrashov 2006; Halligan and Keightley

2009). The mutational covariance matrix, M, summarizes the

properties of such collections of mutations. Theory (Lande 1980;

Turelli 1985; Zhang 2012) and simulations (Jones et al. 2003,

2004; Jones et al. 2007) make clear that the details of the M ma-

trix can affect a wide variety of population properties, including

evolvability—the capability of the genetic system to produce po-

tentially adaptive variants— (Hansen 2006), segregating genetic

variation, the stability of the variation across space and time, and

the predictability of evolution.

Despite the importance of these questions, estimates of M
matrices are few (Houle et al. 1996; Keightley and Halligan 2009).

The number of mutation accumulation (MA) studies that have

measured more than one phenotype is rather small. These stud-

ies have resulted in estimates of M matrices for as many as 11

traits (Lynch 1985), but typically many fewer (e.g., Santiago et al.

1992; Houle et al. 1994; Shaw et al. 2000; Joyner-Matos et al.

2009). Most studies have been directed at measurement of fitness

and its components (e.g., Rutter et al. 2010), either to understand

the maintenance of genetic variance (Eyre-Walker and Keightley

2007; Mackay 2010) or the evolution of life histories (e.g., Houle

et al. 1994; Joyner-Matos et al. 2009). Although fitness compo-

nents are of great importance, they are also difficult to measure

well, so these estimates are usually plagued by large uncertainties

(e.g., Kavanaugh and Shaw 2005). Available M matrices are based

on a wide variety of unrelated traits, what I have called extensive

characterization of the phenotype (Houle 2010; Houle et al. 2010).

The alternative, intensive characterization of mutational effects on

one related set of phenotypes, has not yet been attempted. A pre-

vious study of the effect of spontaneous mutations on Drosophila

melanogaster wings used just two traits—wing length and width

(Santiago et al. 1992).

We present and compare estimates of the M matrices for

wing shape and size in D. melanogaster based on 192 generations

of MA in two genotypes. We measured the location of 12 vein

intersections in 12,000 flies. We address two classes of questions

about M. The first is the genetic architecture of mutational effects

(Hansen 2006; Keightley and Halligan 2009); properties such as

the amount of new phenotypic variation produced, the degree of

dominance and epistatic interactions. The second is the “quality”

of mutational variation (Hansen and Houle 2004; Arnold et al.

2008), the pleiotropic effects of mutations and their distribution

in phenotype space. Previous analyses of this MA experiment have

considered the mutational bias and variance in fitness, transpos-

able element insertions (Houle and Nuzhdin 2004), gene expres-

sion (Rifkin et al. 2005) and nuclear (Haag-Liautard et al. 2007;

Schrider et al. unpubl. ms.) and mitochondrial (Haag-Liautard

et al. 2008) mutations.

Methods
MUTATION ACCUMULATION

The MA portion of the experiment is detailed in Houle and

Nuzhdin (2004) and in the Supplementary Material, section 1.1

(SI-1.1). Each of two inbred lines, IVe-33 and IVe-39, were used

to found a population of 75 MA sublines. Thereafter these sub-

lines were maintained by full-sib mating of single pairs of flies of

virgin flies as much as possible to minimize natural selection.

WING MEASUREMENT

We measured the spatial locations of 12 vein intersections on

wings of live flies using an automated image-analysis system

(Wingmachine; Houle et al. 2003). The data were aligned by gen-

eralized Procrustes least squares superimposition (Rohlf and Slice

1990), which scales point configurations to unit centroid size,

translates all centroids to the same coordinates, and rotates the

scaled coordinates to minimize the sum of the squared distances

between configurations. The result of the superimposition is that

each wing is represented by the x- and y-coordinates of the dis-

placement of each landmark from the centroid, measured in units

of centroid size. The raw data consist of 24 coordinates, but three

degrees of freedom are lost due to fitting the nuisance translation

and rotation variables, although information about size is trans-

ferred from the coordinate data to centroid size. Additional mea-

surement and analysis details are summarized in SI-1.2 and SI-1.3.

EXPERIMENTS

Flies were measured in four different experiments during the MA

process (SI-1.2, Tables S1 and S2). In the 1998 experiment, we

measured wings of male flies descended from control genotypes

and homozygous IVe-39 sublines after 73 generations of MA.

In the 2002 experiment, homozygous MA flies of both sexes

were imaged from all surviving sublines of both lines IVe-33

and IVe-39 between generations 166 and 173. The Cross 2002

experiment consists of two partial diallel crosses of four sublines

each performed at generation 170 with sublines from IVe-39.

Finally, in the Cross 2003 experiment, the surviving sublines were

used to perform a series of full diallel crosses each utilizing four

sublines.

MUTATION MODELS

A total of n sites are capable of influencing a trait, and the ith

site has a haploid mutation rate ui. A mutation causes deviation

ai from the mean in heterozygous condition and 2ai + di = gi in

homozygous condition, where di is the dominance deviation at
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site i. The probability that each individual carries a new mutation

at the ith site is 2ui. Lynch and Hill (1986) defined two differ-

ent mutational variances—one based on the effects of mutations

once they are fixed, which we call the homozyous model, and

the other on the effects of mutant alleles before they can segre-

gate into homozygotes, which is the nonsegregational model. The

homozygous model defines the mutational variance, VM, as

VM = 2
∑

i

ui

( gi

2

)2
= 1

2
UE[g2]

= U

(
2E[a2] + 1

2
E[d2] + COV[a, d]

)
,

(1)

where U = ∑
i μi =nμ̄ is the total haploid mutation rate, and

E[x2] is the expected squared mutational effect xi over all loci.

The nonsegregational mutational variance, VMns, is

VMns = 2
∑

i

ui a
2
i = 2U E[a2]. (2)

In the case where effects are additive, gi = 2ai , and VM =
VMns. The difference between VM and VMns gives an indica-

tion of the importance of dominance and epistasis among new

mutations.

In SI-1.6 we derive the interpretation of covariances in terms

of these two models. The resulting matrix of heterozygous line ef-

fects, B, is used to estimate VMns, whereas the among homozygous

subline covariance matrix, S, is used to estimate VM.

ANALYSES

Quantitative genetic analyses were carried out in Wombat (Meyer

2007, 2010). Wombat implements mixed model analyses of con-

tinuous data by restricted maximum likelihood. It handles datasets

with large numbers of traits, and fits reduced rank models to

the variance component matrices (Kirkpatrick and Meyer 2004;

Meyer and Kirkpatrick 2005, 2008). The default approach to es-

timating genetic covariance matrices in Wombat assumes that the

individuals at the head of the pedigree are outbred, which is not

the case with our data. We directly calculated the relationship

matrix using the coefficients derived in SI-1.4. Sex, block, and

line were treated as fixed effects.

For each combination of sex and genotype, we analyzed the

combined heterozygous and homozygous genotypes to estimate

the covariance matrix B and the nonsegregational mutation ma-

trix Mns = 2B/192. In addition, we analyzed the homozygous

data alone to estimate the subline covariance matrices S and the

total mutation matrix M = S/.(2 × 192). We compare M matrices

based on their evolvabilities, e (Hansen and Houle 2008). Evolv-

ability is the predicted response to a unit-length selection gradient

in the direction of that gradient, and is equivalent to the variance

in the direction of the gradient. Size evolvability was calculated

by dividing the mutational variance of wing centroid size by the

square of mean centroid size. This standardization places size and

shape on comparable scales (Mitteroecker et al. 2004).

Other statistical analyses were carried out in SAS (SAS In-

stitute 2004). Additional details are in SI-1.5.

COMMON SUBSPACES AND EVOLVABILITY RATIO

ANALYSIS

The M matrices estimated are all less than full rank, which com-

plicates comparisons among them. One key aspect of such com-

parisons is to characterize the overlap in the subspaces covered

by pairs of matrices, call them MA and MB. Phenotypic space can

first be divided into the common or “non-null” subspace where

both MA and MB possess statistically significant variation ver-

sus the complementary “nearly-null” space (Gomulkiewicz and

Houle 2009). The nearly-null space can be further partitioned into

the “doubly nearly-null” space, the space in which neither ma-

trix possesses significant variation, and two “singly nearly-null”

spaces, in which one matrix has significant variation, whereas the

other does not.

Flury (1983) showed that eigenanalysis of C = M−1
A MB es-

timates the directions that differ most in the variance of one co-

variance matrix relative to another. We exploited this result to

partition phenotype space into the categories of non-null, singly

null and doubly-null, described in SI-1.7. The eigenvectors and

eigenvalues of C calculated in the common subspace of the two

matrices are also useful for describing what is different about MA

and MB. The eigenvectors, VC, estimate the directions that have

most extreme ratios of variances in MB relative to MA. The eigen-

vectors therefore locate directions with the largest and smallest

ratios of evolvabilities in genotype B relative to A. The eigenval-

ues, �C, estimate the ratio of evolvabilities in those directions.

Mitteroecker and Bookstein (2009) derived a distance metric for

covariance matrices based on VC that we use to represent the

relationship between our estimates of M.

DATA ARCHIVED

Data for the results in this article are archived in the Dryad repos-

itory: doi:10.5061/dryad.3b7g5.

Results
DO MUTATIONS HAVE DIRECTIONAL EFFECTS?

We could directly test for directional mutational bias using the

1998 experiment data, which include IVe-39 control populations,

as well as IVe-39 MA sublines. Variance component analyses

in Wombat and the SAS Mixed procedure (SAS Institute 2004)

showed no significant variance among the replicates of the con-

trol population on the first five principal components of the data,

but highly significant variance for scores on these axes among
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sublines in the IVe-39 MA population. The overall size of the es-

timated genetic matrices reflect this (control replicate matrix trace

2520, MA subline trace 6010). MANOVA showed no significant

mean differences between control and MA genotypes (Table S4).

Any mutational bias is too small to be detectable.

Unfortunately, control populations were not available for di-

rect comparison with MA sublines later in the experiment. Multi-

variate multivariable regressions of shape and size on generation

of MA showed significant effects of generation, plus all interac-

tions of generation with sex and genotype, although the effects

are of modest size. These significant effects could be due to en-

vironmental factors, or to mutational bias. Mutational bias is by

definition consistent in rate and direction over time, at least within

genotypes, whereas environmental effects would be more likely to

be variable over time. This signature of consistent bias should be

detectable in males of genotype IVe-39, which were measured in

1998, 2002, and 2003. The per-generation rate of change between

the 1998 and 2002 experiments was 1.33 shape units/generation,

whereas the rate from 2002 to 2003 was 7.00 units/generation. The

angle between the directions of change over the two periods is 81◦,

not the small angle expected if there is a consistent mutational bias.

The directions of change within all sex and genotype combinations

between the 2002 and 2003 experiments were similar (within 30◦

of each other, with an average angle of 24.2◦), and significantly

less than a sample of 10,000 random angles in 21 dimensional

space (median 81◦, with a lower 95% confidence limit of 65◦).

The inconsistency between directions and magnitudes of change

between 1998 and 2002 and between 2002 and 2003, coupled

with the similarities in change over the second interval seem best

explained by environmental effects, rather than mutational bias.

HETEROZYGOUS VERSUS HOMOZYGOUS MEAN

The Cross 2003 experiment allows us to test for directional dom-

inance, which would impart a consistent direction to the differ-

ence between inbred and outbred means. Genotypic means on the

first two within-genotype canonical axes from four representative

blocks of the 2003 experiment are shown in Figure 1. Means of in-

bred and outbred genotypes do not differ in a consistent direction.

Inbred means tend to lie on the periphery of each ordination, and

outbred genotypes have means intermediate between the parental

inbreds. Both of these observations are consistent with an addi-

tive component to allelic effects. Multivariate analyses of variance

(Supplementary Results 2.1) showed evidence for dominance in

the highly significant interactions of inbreeding status, sex and

genotype, but no consistent main effect of inbreeding, lending no

support to the hypothesis of directional dominance.

OVERALL PROPERTIES OF COVARIANCE MATRICES

We estimated covariance matrices for the nonsegregational and

homozygous models for the nine different partitions based on

genotype (IVe33 and IVe39) and sex. For each model and partition

of the data (e.g., homozygous females for IVe 33), we fit a series

of models varying the rank of the mutational matrix. We used the

corrected Akaike information criterion (AICc) score to judge the

best fitting model, then conducted likelihood ratio tests of this

best model against similar models to judge the range of models

supported (Tables S5 and S6). Table 1 presents the rank of the

best-fitting model, the rank of models not significantly different

from that best model, estimates of matrix sizes, evolvability, and

mutational heritability.

Mutational effects of heterozygous mutations significantly

affected at least k = 7 phenotypic dimensions. Models of lower

rank always fit less well by more than 323 AICc units (P <

0.0001 in all cases, Table S5). Models of higher rank returned

eigenvalues of all higher rank eigenvectors than those shown in

Table 1 as 0, but paradoxically, these models usually had better

likelihoods and AICc scores. This behavior is known to occur in

Wombat for reduced-rank analyses of some datasets (Meyer and

Kirkpatrick 2008; Supplementary Results 2.2). We report results

only for models that had only non-0 eigenvalues.

The homozygous model converged at all matrix ranks tested,

although the estimated likelihood of higher rank models were

usually lower than that of the best model (Table S6). This should

not occur, and thus again indicates numerical problems of some

sort. In three cases, the best model was not significantly better

than the next best model. The ranks of these best-fit homozygous

models were all 11 or more. Rank rises as more inclusive partitions

of the data are analyzed, supporting up to rank 19 of 21 possible

for the pooled dataset including both sexes and genotypes. This

pattern of greater inferred rank based on larger datasets is expected

due to greater power in the larger datasets.

The estimated mutational and residual covariance matrices

for the best-fitting models are presented in Table S7. Models

of rank k in Wombat are fit in a k-dimensional space, so the

M matrices have precisely rank k, even when these are rotated

back into the original 25 dimensional phenotype space, as in

Table S7.

COMPARISONS OF COVARIANCE MATRICES

Table 1 gives the size of the genetic and residual matrices calcu-

lated as their traces, the sum of the elements on the main diagonal.

Size is a key property of an M matrix, because it is linearly related

to evolvability, e (Hansen and Houle 2008). M was substantially

larger in line 39 than in line 33, predicting higher evolvability in

a population founded by IVe39. B was 2.7 times as large, and S
was 1.6 times as large for the combined sex analyses. The residual

variances in line 39 were also a bit higher, 6% higher in the non-

segregational model and 18% higher in the homozygous model.

Male mutational variances were 1.4 times higher than female

variances in the nonsegregational analysis.
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Figure 1. Genotypic means on the first two canonical axes within MA genotypes for representative blocks of the 2003 experiment.

Genotypes share the same two parental sublines, regardless of which was used as the maternal parent. Grey lines connect each outbred

genotype with its two parental inbred sub-lines. Canonical discriminant analyses were carried out on genotype means within each

genotype. The first two axes explain 23% and 14% of the variation in line 33, and 24% and 19% of the variation in line 39.

For comparison with previous estimates of mutational vari-

ance, we obtained an average mutational heritability over all traits,

by standardizing each M size estimate by its corresponding R
matrix size. The nonsegregational mutational heritability is a bit

greater than 0.1%, near the average of previous estimates for a

wide variety of traits in many different organisms (Lynch 1988;

Houle et al. 1996) including Drosophila wings (Santiago et al.

1992). The homozygous mutational heritability is approximately

two to three times larger. We caution that these mutational heri-

tabilities are not related to the ability of traits to evolve (Hansen

et al. 2011).

Comparisons between the sums of partition-specific AICc

scores and the AICc scores for corresponding combined analyses

from Table S6 show that there are very substantial differences

between the properties of mutations in the two genotypes, and

in the effect of mutations on the two sexes. All of the combined

analyses fit at least 1092 AICc units less well than the more

parameter-rich models fit separately to each genotype–sex com-

bination. For example, the sum of the four separate analyses of

sex/genotype combinations fits 11212 AICc units better than the

combined analysis using the homozygous model. Despite these

differences, we regard the combined analyses as the best measures

of the average properties of mutational effects because mutations

arise in a diversity of genotypes, and are expressed and selected

on in both sexes.

To test whether the differences in evolvability between ho-

mozygous and nonsegregational models evident in Table 1 is due

to the lower dimensionality of the nonsegregational models, we

compared evolvability in the first seven dimensions defined by

each M matrix. The results (Table S8) show that the same differ-

ences evident in Table 1 persist in the subspaces where each M is

full rank.

AVERAGE DOMINANCE

The lower nonsegregational mutational variances relative to ho-

mozygous mutational variances must be due to departures from

an additive model. Under the simplifying assumption of perfectly

correlated a and d, and no epistasis, we can calculate the dom-

inance, h, using the parameterization where the phenotypes of

the reference homozygote, the heterozygous, and homozygous
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Table 1. Rank of best fitting mutational models and scalar measures of variance over the entire phenotypic space.

Mutational evolvability

Nonsegregational model Homozygous model
Centroid Mutational

Shape3 size4 heritability5

Matrix size2 Matrix size2 (×103) (×106) (%)

Rank of B1 B R Rank of S1 S RT ēMns ēM eMns eM h2
Mns h2

MT

♂ 33 7 1613 27330 11(12) 21156 27739 0.65 2.16 1.19 3.38 0.06 0.20
♂ 39 7 4358 32503 12(13) 33801 36599 1.80 3.48 2.32 4.75 0.14 0.24
♀ 33 7 1409 29619 12 21512 30397 0.57 2.25 0.70 1.59 0.05 0.18
♀ 39 7 3678 26260 12 38884 29049 1.55 4.07 0.81 2.83 0.15 0.35
♂ 33 and 39 8 2895 30825 15 29996 32803 1.19 3.09 1.69 3.92 0.10 0.24
♀ 33 and 39 7 2048 28819 16 30263 29975 0.85 3.15 0.76 2.53 0.07 0.26
Both 33 7 1804 28899 15 22341 29475 0.73 2.29 1.10 2.91 0.07 0.20
Both 39 7 4587 30772 14(15) 34654 34776 1.89 3.58 2.32 4.05 0.16 0.26
Both 33 and 39 7 2879 30872 19 31309 32266 1.18 3.24 1.58 3.61 0.10 0.25

1Rank of the best-fitting model. Ranks in parentheses are model not significantly different from the best model by a log likelihood test (Table S6).
2Matrix size is the trace of the matrix, or the sum of its eigenvalues.
3Average eigenvalue of the shape portion of the M matrix in centroid size units.
4Mutational variance of centroid size, standardized to mean 1.
5Mutational heritability calculated as the size of the M matrix, divided by the size of the corresponding R matrix.

mutant phenotypes are 0, hx = a and x = 2a + d, respectively

(SI-1.6). Mutations are on average partially recessive, with h =
0.26 for shape and 0.29 for size in the combined dataset. Dom-

inance is quite stable across data partitions, ranging from 0.22

and 0.33 (Table S9). This quantifies the trends shown in Fig. 1,

where outbred genotypes are generally less than half as far from

the mean as their inbred parents.

DIFFERENCES IN MUTATIONAL PROPERTIES

We have strong evidence that the M matrices estimated from dif-

ferent data partitions are different. This raises the question of what

those differences are. We focus on the four independent com-

parisons of sex-specific estimates pooled over genotypes, and of

genotype-specific estimates pooled over sexes, as these are better

estimated than comparisons within particular genotypes or sexes.

One simple way in which covariance matrices may differ is

by being proportional to each other. We tested whether propor-

tional differences were necessary and sufficient to explain matrix

differences by estimating the proportionality constant that, when

multiplied by the best estimate of the mutation matrix for the first

data partition, gave mutation parameter estimates that maximized

the likelihood of the data from the second partition.

For all four comparisons, fitting a proportionality constant

significantly increased the fit of one partition’s estimates to the

other. For the genotype-specific estimates, a proportionality con-

stant of 2.04 for the line 33 estimates improved the fit to the line

39 data by 52.9 log-likelihood units in the nonsegregational case.

In the homozygous case a proportionality constant of 2.14 for

the line 33 estimates improved the fit to the line 39 data by 73.5

log-likelihood units. For the sex-specific estimates, a proportion-

ality constant of 1.17 for the female estimates improved the fit to

the male data by 4.6 log-likelihood units in the nonsegregational

case. In the homozygous case a proportionality constant of 1.24

for the female estimates improved the fit to the male data by 10.4

log-likelihood units.

These results demonstrate that proportional differences are

a component of the differences between matrices. However, the

best fitting proportionality constants always yielded fits that were

greatly inferior to the best estimates (1253 and 736 logL units

for male–female differences; 4772 and 6278 units for genotype

differences in nonsegregational and homozygote models, respec-

tively). There are real differences in matrix size, particularly be-

tween genotypes 33 and 39, but the nonproportional differences

in matrix structure are quantitatively far more important.

A useful measure of matrix difference is the angle between

the responses to the same selection gradients, or “random skew-

ers” (Cheverud 1996). For each comparison we probed each pair

of 24-dimensional shape matrices with the same 10,000 unit-

length vectors of random direction. Table 2 shows the median an-

gles of response vectors between the matrices pooled over sexes

and/or genotypes above the diagonal. All of the comparisons in

Table 2 are significantly less than random expectation of 82◦ (cal-

culated by simulation) by a one-sided test, with the exception

of the nonsegregational matrices for line 33 and line 39, where
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Table 2. Random skewers angles above diagonal, and matrix correlations below the diagonal. Bold-faced entries are independent

planned comparisons. Italicized entries compare nonsegregational and homozygous matrices for the same partitions. Random skewers

entries are the median angle between the 10,000 responses, and in parentheses, the 2.5% and 97.5% quantiles of the angles.

Nonsegregational Homozygous

♂ ♀ Both Both Both ♂ ♀ Both Both Both
pool pool 33 39 Pool pool pool 33 39 Pool

♂ pool 23
(12–55)

40
(22–73)

27
(13–61)

19
(8–45)

19
(8–46)

29
(13–59)

43
(23–76)

23
(12–56)

23
(9–48)

♀ pool 0.89 41
(24–77)

23
(10–56)

19
(9–46)

28
(15–65)

20
(9–47)

44
(26–79)

28
(13–63)

26
(13–58)

Nonsegregational Both 33 0.64 0.63 53
(32–86)

36
(21–64)

38
(21–67)

35
(20–63)

20
(10–45)

50
(28–84)

34
(20–62)

Both 39 0.84 0.92 0.46 28
(12–65)

31
(16–68)

31
(14–67)

53
(31–85)

20
(8–51)

30
(14–63)

Both pool 0.92 0.93 0.69 0.86 27
(12–60)

21
(12–49)

38
(23–71)

30
(12–65)

24
(10–55)

♂ pool 0.92 0.84 0.67 0.81 0.85 25
(15–52)

37
(21–64)

23
(11–51)

12
(6–26)

♀ pool 0.85 0.92 0.72 0.85 0.91 0.87 31
(18–59)

30
(13–60)

18
(9–36)

Homozygous Both 33 0.61 0.58 0.90 0.46 0.66 0.69 0.76 49
(27–82)

31
(18–55)

Both 39 0.89 0.86 0.51 0.92 0.84 0.89 0.85 0.52 22
(9–47)

Both pool 0.91 0.87 0.72 0.84 0.89 0.96 0.94 0.76 0.91

the upper 95% quantile is 82.1◦. Only four of these comparisons,

shown in bold, are independent. The angles between genotype-

specific comparisons are relatively large (49–53◦), whereas sex-

specific comparisons have smaller angles (23–25◦). The structure

of the nonsegregational and homozygous matrices seems to be

rather similar, as the median angles between the nonsegregational

and homozygous matrices, shown in italics, average just 21◦, de-

spite their large differences in ē. Table 2 also shows matrix correla-

tions between the 24-dimensional shape matrices, which gives the

same qualitative picture of matrix similarity as random skewers.

Mitteroecker and Bookstein (2009) showed that an appropri-

ate measure of distances among full-rank covariance matrices is

‖MA, MB‖ =
√√√√ p∑

i=1

log(λC·i )2,

where λC·i are the eigenvalues of C = M−1
A MB. We calculated

these distances in the space of the first five eigenvectors of the co-

variance matrix of the pooled genotype, combined sex M matrix.

Multidimensional scaling (MDS) on the distance matrix (SAS

Institute 2004) in two dimensions fit very well. MDS on the ma-

trices uncorrected for size separated homozygous and nonsegre-

gational matrices in coordinate space (Fig. S1). MDS on matrices

standardized by their traces is shown in Figure 2. The correspond-

ing homozygous and nonsegregational estimates tend to be near

neighbors. Matrices estimated from larger subsets of the overall

Figure 2. Multidimensional scaling of the distance matrix among

the matrix size standardized M matrices. Distances calculated in

the subspace defined by the first 5 eigenvectors of the pooled

genotype and sex M matrix. Labels and lines connect the corre-

sponding nonsegregational and homozygous estimates.

data are more central than those estimated with subsets of the

data. Genotype-specific differences define dimension 1, whereas

sex-by-genotype interactions largely define dimension 2.

To perform pairwise comparisons among M matrices, we

partitioned phenotype space into the common, non-null region in

which both matrices possessed significant genetic variance, ver-

sus those in which one or both matrices did not have significant
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Table 3. Scalar measures of matrix similarity calculated in the common space of the shape matrices. Conditional evolvability, c̄, autonomy,

ā, respondability, r̄, and response difference, d̄ defined in Hansen and Houle (2008).

Matrices compared

Nonsegregational Homozygous

MA: pool M MA: 33 both MA: pool M MA: 33 both
Statistic MB: pool F MB: 39 both MB: pool F MB: 39 both

Non-null dimensions 5 5 12 10
Singly nearly-null dimensions 2 2 0 2
Mean ē in non-null subspace 4.37 5.44 6.16 6.78
Mean e in singly null subspace1 0.68 0.31 — 0.11
eB/eAon common emax 0.78 5.44 1.08 2.90
ēB/ēA 0.75 2.59 1.01 1.59
c̄B/c̄A 0.70 2.32 0.82 1.35
āB/āA 0.98 0.83 0.84 1.04
r̄B/r̄A 0.73 2.83 1.04 1.66
d̄ 2.05 6.85 3.47 7.16
Angle between emaxA and emaxB 19.1◦ 51.8◦ 22.7◦ 57.8◦

Median (95%) skewer angle 17.7◦ (34.1) 45.6◦ (72.6) 24.0◦ (41.6) 48.4◦ (73.3)
Median random angle 70.0◦ 70.0◦ 78.3◦ 77.2◦

Matrix correlation 0.12 −0.19 −0.38 −0.56

1Mean of the maximum e in the comparison M matrices along singly nearly-null vectors of Cr = M−1
Ar MBr.

genetic variance (the singly- or doubly-null spaces) using the al-

gorithm described in the Methods section. Table 3 gives measures

of matrix similarity based on this common subspace analysis. Ma-

trices from the nonsegregational analysis share a five-dimensional

non-null subspace, and each comparison reveals two singly null

dimensions. The maximum possible dimensionality of these shape

data is 20, as four of 24 degrees of freedom are used to regis-

ter the forms before analysis. The nonsegregational matrices are

thus doubly nearly-null for 13 of the 20 dimensions. In the ho-

mozygous model, sex-specific matrices share a 12 dimensional

non-null subspace. Genotype-specific matrices share a 10 dimen-

sional non-null subspace, and two singly null dimensions. There

are eight doubly nearly-null dimensions, although the analysis

of the complete pooled dataset showed 19 significant non-null

dimensions (Table 1). One interesting question is whether the

singly nearly-null dimensions ever have a large amount of vari-

ance in one of the two comparison matrices. We addressed this

by comparing mean ē in the common subspace, shown in the

third line of the Table, with the mean of the maximum of the two

evolvabilities along eigenvectors of C judged to lie in the singly

nearly-null subspace, shown in the fourth line of the Table. In all

cases, the singly nearly-null evolvabilities are much smaller than

the average of evolvability of the non-null subspace, and within

a factor of 2 of the minimum eigenvalue statistically supported

for each M matrix. The singly-nearly null dimensions are those

where the amount of variance in both M matrices is near the

threshold of statistical significance, with one happening to fall

above that threshold, and one below. The low proportion of singly

null dimensions suggests that despite the differences among M

matrices, they have substantial similarities in which directions in

phenotype space have the lowest genetic variances.

The remaining entries in Table 3 give a variety of scalar

measures of matrix similarity calculated in the common non-null

subspace. The vector emax is the direction with the greatest vari-

ance, and we show the ratio of evolvabilities on this vector in the

common subspace, and the angle between emax vectors in the com-

parison matrices. Evolvabilities, respondabilities and conditional

evolvabilities (Hansen and Houle 2008) of sex-specific matrices

are within a factor of 1.4, whereas genotype-specific matrices

generally differ by larger factors, up to the 5.4× difference in

evolvability along emax for the nonsegregational model. Mean au-

tonomies are relatively similar. Response differences are in shape

units that are difficult to interpret, but the ratio of response differ-

ences is more than twice as large for genotype comparisons as for

sex comparisons.

Table 3 also shows median skewer angle (Cheverud 1996)

calculated from 10,000 random selection gradients, and the 95%

quantile of angle as a one-sided confidence interval. The expected

median angle between random vectors is shown for comparison.

Sex-specific matrices have small response angles that are highly
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Table 4. Descriptions of directions with different variances in the non-null subspace defined by comparison matrices. See text for

explanation. Bold-faced vectors are represented in Fig. 3.

Nonsegregational Homozygous

MA: pool M MA: 33 both MA: pool F MA: 33 both
MB: pool F MB: 39 both MB: pool M MB: 39 both

Comparison matrices:
C vector eB/eA

eA+eB
2 eB/eA

eA+eB
2 eB/eA

eA+eB
2 eB/eA

eA+eB
2

1 1.44 2.61 16.32 3.72 5.98 1.16 38.98 2.61
2 1.17 2.25 5.93 10.02 3.80 1.50 12.16 2.25
3 0.73 2.63 2.05 3.84 2.55 2.82 9.62 2.30
4 0.50 1.59 0.63 1.73 1.95 2.43 5.01 1.42
5 0.39 2.20 0.40 2.96 1.26 1.62 3.10 1.66
6 1.22 2.05 1.38 2.38
7 0.77 1.89 1.07 1.95
8 0.51 1.62 0.56 3.49
9 0.47 1.68 0.26 2.54
10 0.37 1.43 0.01 5.45
11 0.27 1.78
12 0.13 0.95
mean 0.85 2.25 5.07 4.45 1.61 1.74 7.22 2.61
std. dev. 0.45 0.42 6.67 3.22 1.76 0.52 11.91 1.15
Median ratio1 1.44 2.52 2.33 4.46

1Median of the greater of eB/eA and eA/eB in each column.

significantly different from the angle between random vectors.

Genotype-specific response angles are much larger, but nonethe-

less generally less than random angles. The genotype-specific

responses predicted from the nonsegregational matrices are not

significantly less than the random vectors, although the other three

comparisons differ significantly from random. We also show the

matrix correlations between comparison matrices. Matrix cor-

relations are mostly negative, despite the similarities of matrix

structure revealed by other measures of similarity.

To further investigate the nature of the differences between

M matrices, we characterized those directions with the greatest

ratios of variances and evolvabilities, as described in the Meth-

ods section. Table 4 shows the results of these evolvability ratio

analyses. The first- and last-ranked vectors are those for which

the ratios of evolvabilities are most extreme, as shown in the first

column within each comparison. Note that disparity of evolvabil-

ities is greatest for both the largest and smallest values. A more

interpretable measure of overall difference is the larger of the two

ratios eB/eA or eA/eB, and the median value of these is shown in

the last row of the Table.

The interest of each of these vectors is also dependent on

the amount of variance along those vectors, measured in the sec-

ond column of each comparison by the average evolvability in

the two matrices along that vector. The distinction is striking in

the comparison between genotype-specific matrices in the non-

segregational analysis: the first vector is notable because line 39

has 16 times the variance found in line 33; the second vector is

notable both because line 39 has six times the variance in line

33, and an average evolvability of 10.02, far above the mean ē

of 5.44 in the common non-null subspace (Table 3), and close

to emax of 11.5 for the pooled matrix (Table S8). For the sex-

specific comparisons, all vectors have evolvabilities less than the

mean evolvability in the non-null subspace. The same is true of

the genotype-specific comparison in the homozygous analysis,

although vector 10, which has the greatest difference (108 times

more variance in line 33 than line 39) also has an average evolv-

ability of 5.45, only slightly less than the mean ē of 6.78 in the

common non-null subspace.

The directions and magnitudes of some of the more notable

vectors from Table 4 are shown as deviations from a reference

wing in Figure 3. None of these vectors show similar patterns

of landmark differences, an observation confirmed by the high

angles between these vectors (results not shown).

Discussion
We emphasize three findings. First we have detected mutational

genetic variation for almost every aspect of wing shape and size

that we studied. Second, sex-specific Ms are more similar than

the genotype-specific Ms. Third, mutational effects are partially

recessive. Before discussing these conclusions, we justify a few

other aspects of our analysis.

1 1 2 4 EVOLUTION APRIL 2013



MUTATIONAL COVARIANCE IN DROSOPHILA WINGS

M vs. F, vector 3 
2.55 X 

M vs. F, vector 5 
2.56 X 

33 vs. 39, vector 1 
38.98 X 

33 vs. 39, vector 9 
108.42 X 

33 vs. 39, vector 1 
16.32 X 

33 vs. 39, vector 2 
5.93 X 

Homozygous Non-segregational 

Figure 3. Vectors identified as notably different in the comparisons in the common space of sex-specific and genotype-specific matrices

in Table 4. Circles denote the position of the 12 landmarks, and thick lines the magnitude and direction of the mutational variance along

each vector. The units are 1000 × the average mutational evolvability along that vector in the matrices compared, except for the lower

left vector, which has units of 500 × evolvability. Thin lines connect landmarks that are connected by a vein. The direction of vectors has

been reversed if necessary to minimize overlap in the deviations from the reference. The reference phenotype is for males. Numbering

of vectors follows that in Table 4.

ANALYSIS PHILOSOPHY

Previous analyses of covariance matrices have emphasized hy-

pothesis testing, even when the hypotheses are not biologically

motivated. We emphasize instead the evolutionary properties of

M matrices, even if those measures have no available statistical

test, because evolutionary prediction is the motivation for study-

ing covariance matrices (Houle et al. 2011). Hansen and Houle

(2008) suggested a family of measures of genetic covariance ma-

trix properties related to the amount of response to directional

selection they predict. Evolvability, e, is the predicted response to

unit strength selection in the direction of the selection gradient in

the absence of stabilizing selection. Conditional evolvability, c,

is the response to unit strength selection when stabilizing selec-

tion around the selected direction is infinitely strong. Evolvability

predicts the ability to evolve in a given direction in the ideal case

when there is no selection on other directions in phenotype space,

whereas conditional evolvability predicts evolvability in the case

of maximal conflict between directional and nonlinear selection.

The random skewers statistic (Cheverud 1996) measures the mean

angle between response vectors predicted by two different covari-

ance matrices, and is thus is a complementary measure of matrix

similarity that depends only on the structure of the covariance

matrices, and not their sizes. It is critical for the interpretability

of all these measures that traits are either measured in the same

units, or are standardized to make them comparable, for exam-

ple by mean-standardization (Hansen and Houle 2008; Huttegger

and Mitteroecker 2011). Our shape variables are in the same units,

which are directly comparable to mean-standardized centroid size

(Mitteroecker et al. 2004).

We are not opposed to statistical testing, and have employed

it whenever we have a biologically relevant hypothesis for which

we know how to construct a test. For some parameters, such as

matrix rank, statistical testing is an integral part of the process of

arriving at a well-supported, conservative conclusion.

We have, however, eschewed several commonly used anal-

yses that offer tests of hypotheses that are not biologically
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interpretable; these analyses include matrix correlations and com-

mon principal components analysis (Houle et al. 2002). Matrix

correlation is a commonly used scalar measure of matrix similar-

ity but it has no necessary relationship to predictions of evolution.

Correlations are standardized and centered measures of relation-

ship and consequently discard information about the mean values

of covariances, and disparities of the covariances within matrices.

Consequently, it is easy to construct pairs of matrices that either

predict extremely different patterns of evolution, yet have per-

fect matrix correlations, or that predict virtually the same pattern

of evolution yet are uncorrelated, or even negatively correlated.

Our results provide an example. Although the matrix correla-

tions in the 20 dimensional space of wing shapes are positive

(Table 3), consistent with matrix similarities, in the common

five-dimensional spaces of sex- and genotype-specific compar-

isons, matrix correlations are near 0 or negative (Table 4). This

contradicts the evolutionarily motivated analyses that show great

similarities of matrix structure.

MUTATIONAL BIAS

An important question about the effects of new mutation is

whether they are biased in direction. Bias would have both bi-

ological (Keightley and Lynch 2003; Braendle et al. 2010) and

statistical (Keightley et al. 2000) consequences. Bias is expected

for traits under persistent directional selection, such as fitness or

its components. The majority of previous analyses of mutational

effects on fitness components and life history traits have found the

expected mutational bias (Keightley and Lynch 2003; Shaw et al.

2003), although there are exceptions (Shaw et al. 2000; 2002;

Rutter et al. 2010). For Drosophila wings, a previous mutation-

accumulation experiment found no significant bias in wing length

or width (Santiago et al. 1992). In addition, wing form is remark-

ably conservative in the genus Drosophila (Houle et al. 2003), even

though the evolvability of many aspects of wing form is quite high

(Weber 1990, 1992; Houle et al. 2003; Le Rouzic et al. 2011), sug-

gesting that wing trait means are at naturally-selected optima. For

traits under stabilizing selection there is no a priori expectation

of mutational bias. Our data shows no evidence for a mutational

bias in wing form, although these tests were fairly weak.

GENETIC ARCHITECTURE OF MUTATIONAL VARIANCE

Mutational variance, VM, is defined as VM = U E[g2]/2 (Lynch

and Hill 1986), where U is the haploid genomic mutation rate and

E[g2] is the expected squared homozygous effect of a mutation.

We applied two models that estimate VM. The nonsegregational

model yields estimates of the rate of increase in additive genetic

variance in an initially homozygous population when mutant alle-

les are introduced in heterozygous condition. Twice this quantity

estimates VM in the special case where genotype–phenotype map

is linear or additive. The second model, which we call the ho-

mozygous model, directly estimates U E[g2] and thus has a more

direct relationship to VM as defined by Lynch and Hill (1986).

When the genotype–phenotype map is not linear, neither the

nonsegregational nor the homozygous model directly determine

the additive genetic variance maintained by mutation-selection

balance. Additive genetic variance is a population parameter that

is determined both by the genotype–phenotype map and by the

frequency that alleles have in the population (Hansen 2006). If

mutant alleles have deleterious fitness effects that ensure that

they remain rare, the nonsegregational VM will better predict the

amount of additive genetic variance in the population. If mutant

alleles are neutral, VM estimated by the homozygous model will

be the better predictor, as alleles will ultimately come to be both

rare and common. The evidence that wings are under stabilizing

selection reviewed above makes it unlikely that mutations affect-

ing wing shape are all neutral. The relevant VM for wing traits

probably lies somewhere between our homozygous and nonseg-

regational estimates.

There is a substantial difference between the nonsegrega-

tional and the homozygous estimates of VM, which is most readily

explained if mutant alleles have partially recessive effects. More

complex alternative explanations could also involve epistatic ef-

fects. Assuming that dominance is the cause of the difference,

mutations in heterozygous condition have about 25% of the effect

that they do in homozygotes. Partial recessivity of spontaneous

mutations is a common finding, although most estimates are for

life history traits (Halligan and Keightley 2009). The only pre-

vious estimates for wing traits in Drosophila show additivity of

mutational effects (Santiago et al. 1992). Our finding of partially

recessive mutational effects also contrasts with the additivity of ef-

fects estimated in a natural population of D. melanogaster (Mezey

and Houle 2005) for the same geometric morphometric traits we

used here. This can be explained if spontaneous mutations with

recessive effects have more deleterious fitness effects than those

with more additive functional interactions. Previous studies of

dominance and fitness of spontaneous mutations for non-wing

traits support this hypothesis (Simmons and Crow 1977; López

and López-Fanjul 1993).

DIMENSIONALITY

Our previous study of standing genetic variation found evidence

for additive genetic variation in nearly all of the 20 aspects of

wing shape studied (Mezey and Houle 2005). This result has been

criticized based on the hypothesis that one of our methods for de-

termining dimensionality was too liberal (Hine and Blows 2006).

We have reanalyzed our natural population data using the factor-

analytical approach in Wombat, and found that the reanalysis sup-

ports a 20-dimensional model (not shown), supporting our original

contention that our estimates of dimension were conservative.
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Our analysis of the full mutation-accumulation experiment

using the homozygous model shows mutational variance in at

least 19 of 21 possible dimensions in M. Homozygous analyses

of other partitions of the data lead to lower estimates of dimen-

sionality, although this is likely to be due to the smaller sample of

mutations within genotypes and lower statistical power. The sub-

lines descended from the two inbred genotypes in this experiment

have very different patterns of mutational effects, suggesting the

possibility that each genotype engenders a different mutational

subspace. The nonsegregational model estimated dimensionality

at either 7 or 8 dimensions, depending on the data partition. We

suspect that this is artificially low, as models with higher dimen-

sionalities did not properly converge, so that the likelihood of

more complex models could not be assessed.

One possible explanation for the high dimensionality of ge-

netic effects is that they lie on a curved surface or manifold of

lower dimensionality embedded in the space of all possible wing

shapes. If this is so, then describing that manifold would provide

a simpler picture of genetic variation in wing shape. We have

applied variants of the Isomap technique for discovering mani-

folds in high-dimensional data (Tenenbaum et al. 2000), but have

so far found no evidence for low-dimensional curved surfaces

(Bendich and Houle, unpubl. ms.). Alternatively, dimensional-

ity may truly be high. Many genes affect wing shape (Weber

et al. 1999; 2001, 2005; Mezey et al. 2005) and each may ex-

plore somewhat different aspects of the phenotypic space. Some

studies of the dimensionality of genetic variance in other species

support rather low dimensional models (Kirkpatrick and Lofsvold

1992; Hine and Blows 2006; McGuigan and Blows 2007). One

possible explanation for this discrepancy is that geometric mor-

phometric data are different because they intensively characterize

variation within one part of an organism such as a wing, skull or

jaw. Clearly studies of the dimensionality of variation in a wide

variety of phenotypes are needed.

M MATRIX COMPARISONS

We have very strong evidence that the M matrices are significantly

different for male and female flies (sex-specific matrices) and the

two base inbred genotypes (genotype-specific matrices). The sex-

specific differences are due to differences in expression of the

same set of mutations, whereas the two genotypes independently

accumulated mutations that are almost certainly different. On the

other hand, there are also substantial similarities among matrices,

as indicated, for example, by random skewers results that show

intermediate angles between predicted responses, and the fact

that a minority of dimensions are singly-null, having significant

genetic variation in one partition of the data, but not in its partner

partition.

The sex-specific matrices are different in size, with males

having more total variance than females in the nonsegregational

model and for centroid size in both analyses. The modest size

of these differences (17% more variation in males in the nonseg-

regational model and 24% in the homozygous model) is consis-

tent with dosage compensation on the X chromosome in males.

Dosage compensation is expected to magnify the X-specific vari-

ance by a factor of 2, and the X chromosome constitutes about

20% of the genome (Mezey et al. 2005). Unfortunately, models

that specifically estimated the X-chromosome variance as well

as the autosomal variances did not converge. Differences in ma-

trix size only accounted for a small proportion of the differences

in the sex-specific matrices implicating other differences in the

sex-specific genotype–phenotype map.

The average angles between predicted responses to selection

(random skewers) in sex-specific matrices only differed by about

20◦ over the whole space (Tables 2 and 3). Those directions with

the most different evolvabilities in the common subspace differed

by less than 2.6× in the nonsegregational analysis, and up 6×
in the homozygous analysis (Table 4). The directions with the

biggest disparities in evolvablity had rather small average evolv-

abilities, suggesting that some of these differences are due to error

in estimating the differences between matrices.

The genotype-specific matrices of the two base inbred lines

differ from each other considerably, but the interpretation of these

differences is less clear. It may indicate genetic differences in the

number or nature of mutations between genotypes. However, if

the number of mutations with large effects on wings is modest,

sampling would cause replicate experiments to produce rather

different realized M matrices, even if they are drawn from the

same population of effects, especially given the high number of

dimensions in which those mutation vectors can fall.

One indication that some of the genotype-specific differences

may be due to genetic differences in mutation is that the line 39 M
matrix is substantially larger than the line 33 matrix, by a factor of

greater than 2 over the whole phenotype space. The random skew-

ers angles are large, around 50◦. The leading eigenvectors are at an

angle of more than 45◦, and there are substantial evolvability dif-

ferences on the leading eigenvectors of the common matrices. The

evolvability ratio analysis (Table 4 and Fig. 3) shows some spec-

tacularly large differences in evolvabilities in particular directions.

One possible explanation for these differences that we can

rule out is the presence of a small number of sublines with very

atypical phenotypes. Inspection of plots of genotype means in

the first few dimensions of discriminant space, such as those in

Figure 1, and more generally the distribution of Mahalanobis

distances between genotype means, does not reveal any sublines

in either genotype with extreme values. The differences seem to

be distributed across many sublines, rather than due to just a few

atypical values.

The differences in matrix size could be explained by an over-

all difference in mutation rate. Our estimates of the base-pair
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nucleotide mutation rate, however, show that line 33 has a mu-

tation rate that is at least twice that in line 39 (Haag-Liautard

et al. 2007; Schrider, Houle, Lynch and Hahn unpubl. ms.). The

mutation rate differences between genotypes are principally due

to a fivefold higher rate of G:C→A:T transitions in line 33. The

fact that the phenotypic variance of mutation on wings in line

39 is about twice as large despite this lower mutation rate gives

increased confidence that the nature of phenotypic effects is truly

different between the two genotypes. There are many possible ex-

planations, including differences in mutational hotspots between

genotypes, differences in GC content of genes that influence wing

shape, and differences in phenotypic robustness.

PROSPECTS

The lack of detailed data on the M matrix has been a key lim-

itation of empirical analyses of the role of quantitative genetic

variation in evolution (Arnold et al. 2008). With these data in

hand, we can go on to compare mutational variance to standing

variation (Mezey and Houle 2005) and to the pattern of diversifi-

cation among species (Houle et al. 2003). Such analyses can help

to answer a variety of unsolved questions in evolutionary genetics,

such as: Is mutation limiting the rate of evolution? Are the phe-

notypes that do not evolve forbidden by an absence of variation,

or by low fitness? We encourage the gathering of data on muta-

tional variation in other high-dimensional suites of traits, so that

we can begin to build solid conclusions about these fundamental

questions.
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Table S1. Wing data obtained.

Table S2. Means for all variables in each data partition. See attached file “Table S2 MAmeans.csv.”

Table S3. Coefficients of covariance relationships between genotypes.

Table S4. MANOVA testing for control and MA differences within the 1998 experiment.

Table S5. Likelihood ratio tests of the best-fitting nonsegregational model by the AICC criterion, relative to the next simplest

model.

Table S6. Likelihood ratio tests of the best-fitting homozygous model by the AICC criterion, relative to similar models. Likelihoods

should increase with number of parameters, but more complex models often returned lower likelihoods. The P values for these

cases are denoted “NA” as no likelihood ratio test could be performed in those cases.

Table S7. Estimated mutational and residual variance-covariance matrices. Table is in separate file ‘Table S7 All M R matrices.csv’

Table S8. Scalar evolvability measures calculated on the first 7 dimensions of each M matrix. Measures are evolvability, e,

conditional evolvability, c, autonomy, a, and respondability, r, defined in Hansen and Houle (2008).

Table S9. Average dominance of mutations.

Figure S1. Multidimensional scaling of the distance matrix among the unstandardized M matrices. Distances calculated in the

subspace defined by the first 5 eigenvectors of the pooled genotype and sex M matrix. The six points to the upper left are from

genotype IVe-39, those to the lower right are from IVe-33, whereas the six intermediate points are for the pooled genotype

estimates.
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