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Introduction

There has been considerable speculation about the

degree of variation among individuals in their develop-

mental stability, their ability predictably to complete

development to an optimum state (Palmer, 1996; Mùller

& Swaddle, 1997). The principal hurdle to empirical

studies of developmental stability is that, in most cases,

we do not know what the optimum state of a trait is, so

we cannot say how much of the variation is due to

variation in the optimum and how much to a failure to

develop to that optimum. When the same structure

develops on either side of a symmetrical body however,

we can assume that the optimum state is often one of

perfect symmetry. Where this symmetry of the optimum

can be assumed, asymmetry is referred to as ¯uctuating

asymmetry (FA) (Palmer & Strobeck, 1986; Palmer,

1994). A large body of work now assumes that FA is a

good indicator of developmental stability (Mùller &

Swaddle, 1997).

Surprisingly, given these attractions of FA as an

indicator of developmental stability, the precise relation-

ship between the two has never been addressed analyt-

ically. Previous studies have, with few exceptions, relied

on the negative relationship between FA and develop-

mental stability that exists by de®nition. There are

several barriers to studying this relationship. First,

developmental stability is currently a hypothetical entity

that has no unique relationship with observable proper-

ties of organisms. For example, FA is known to be

affected by the environment an individual develops in

(Parsons, 1990) as well as by variation in the develop-

mental stability of individuals. It is also not clear that

there is any single property of an individual that can be

labelled developmental stability, as each trait of an

individual may to some degree have different stability

properties from every other trait (Mùller & Swaddle,

1997, pp. 53±55; Leung & Forbes, 1997). For example,

traits that develop at different times, or in different parts

of the body, may differ in their developmental stability.

Taken together, these complications have so far precluded

empirical characterization of the relationship between

developmental stability and FA, despite a number of

demonstrations that variation in developmental stability
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Abstract

The relationship between developmental stability and morphological asym-

metry is derived under the standard view that structures on each side of an

individual develop independently and are normally distributed. I use devel-

opmental variance of sizes of parts, VD, as the converse of developmental

stability, and assume that VD follows a gamma distribution. Repeatability of

asymmetry, a measure of how informative asymmetry is about VD, is quite

insensitive to the variance in VD, for example only reaching 20% when the

coef®cient of variation of VD is 100%. The coef®cient of variation of

asymmetry, CVFA, also increases very slowly with increasing population

variation in VD. CVFA values from empirical data are sometimes over 100%,

implying that developmental stability is sometimes more variable than any

previously studied type of trait. This result suggests that alternatives to this

model may be needed.
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of some characters does exist (Parsons, 1990; Whitlock &

Fowler, 1997; Gangestad & Thornhill, 1999).

In the absence of detailed empirical data, we must

depend on models to develop our intuition. The majority

of workers have adopted the following standard model of

¯uctuating asymmetry (Palmer & Strobeck, 1986; Palmer,

1996). Each individual is characterized by its develop-

mental variance, the converse of developmental stability.

Paired structures are assumed to develop independently

towards the same expected size but to show some

normally distributed variation around that expectation.

The amount of variation around the expected size is

determined by the developmental variance. In this

model, the difference between paired structures is

therefore also normally distributed, with variance twice

that of the variance of each paired structure.

Several recent explorations of this standard model

suggest that the expected relationship between FA and

developmental stability is very weak. FA essentially

measures developmental variance, the variance in size

of body parts when they develop in the same environ-

ment, which is the converse of developmental stability.

Variances are more dif®cult to estimate well than means,

so we should expect that more sampling effort would be

needed to study FA than a typical trait. Unfortunately,

FA must usually be estimated from a single pair of

measurements, yielding a poor estimate of the variance

and therefore of the proportion of variation in FA that

could be due to real variation in developmental stability

(Whitlock, 1996; Houle, 1997).

The likelihood that only a small amount of information

about individual developmental stability is gained from a

single measure of FA has led to two efforts to quantify

how much of the variation in FA could be due to

variation in developmental stability, both assuming the

simple model of the development of paired structures

outlined above. One such effort used the relationship

between the mean and variance of FA (Whitlock, 1996),

whereas the other exploited the kurtosis in FA expected

to arise from variation in developmental stability (Gang-

estad & Thornhill, 1999).

Whitlock (1996) observed that there is a simple

relationship between the mean FA and the variance in

FA for individuals with the same developmental stability.

Therefore, one can calculate by subtraction the propor-

tion of the total variance in FA that can be due to

differences in developmental stability. This quantity is

familiar from quantitative genetics as the repeatability.

Although this insight is correct, the formulas given by

Whitlock (1996) were incorrect; corrected formulas have

now been published (Van Dongen, 1998b; Whitlock,

1998). The repeatability provides an intuitive measure of

the reliability of individual measurements. More impor-

tantly, the repeatability sets an upper limit to the

heritability, the proportion of the variance that can be

due to genetic causes. It also sets an upper limit on the

phenotypic correlation between the asymmetries of

different pairs of traits on the same individual. Whitlock

showed that the maximum repeatability of FA is 0.64 and

that the coef®cient of variation of FA is sometimes so

large that the repeatability would be expected to

approach this maximum value (Whitlock, 1996). Para-

doxically, because FA is such a poor measure of variance,

even traits with low repeatability and small correlations

of FA among traits may re¯ect a great deal of variation in

developmental stability.

Using simulations, Gangestad & Thornhill (1999)

derived an empirical relationship between repeatability

and kurtosis in signed FA, the difference in size between

paired structures. They come to conclusions similar to

those of Whitlock, arguing that, despite the low repeat-

ability of many estimates of FA, the heritability of

developmental stability itself may be high.

In this paper, I extend Whitlock's (1996, 1998) work to

consider the relationship between the distribution of

developmental stabilities and the variance of FA. Whit-

lock's approach leads to an estimate of the proportion of

the variation in FA that can be due to variation in

developmental stabilities, but it does not consider vari-

ation in developmental stability explicitly. The results

presented here go the next step and allow inferences

about the amount of variation in developmental stability

from the repeatability of FA, based on the standard

model. Previous work that has explicitly included vari-

ation in developmental stability has considered mixtures

of individuals with two or three different stabilities

(Houle, 1997; Van Dongen, 1998b), rather than more

realistic continuous distributions. Other work has relied

on simulations (Leung & Forbes, 1997; Van Dongen,

1998b; Gangestad & Thornhill, 1999), which are dif®cult

to generalize. The principal result of this model is that, in

order for measures of FA to have the substantial

repeatabilities implied by some data, mean-standardized

variation in developmental stability would have to be

higher than for most previously studied traits.

In the next section I present an intuitive introduction

to the model. The Mathematical results section then derives

the relationship between developmental stability and

measures of asymmetry based on this model. From these

relationships, I then obtain Numerical results. The reader

who wishes to obtain the main results without mathe-

matical details may skip the Mathematical results section.

The model

I assume a population of organisms that are unable to

regulate development perfectly. This imperfect develop-

ment is studied by measuring a pair of structures on

either side of an axis of symmetry, such as right and left

limb lengths. I start with the commonly accepted model

for the development of bilaterally paired traits, which

imagines that each side of the organism develops inde-

pendently of the other and that the variation in each side

is normally distributed (Palmer & Strobeck, 1986; Palmer,
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1996). This model of asymmetry has a pragmatic basis

and is not directed at attempting to discern the causes of

variation in development. It merely assumes that devel-

opmental variance exists and that developmental vari-

ance captures something about what we intuitively mean

when we discuss developmental stability. If we under-

stood the details of development of the morphological

structures, we could make the relationship between

asymmetry and development explicit. Clearly, the pre-

sent state of knowledge does not allow this step, although

a number of speculative efforts in this direction have

been undertaken (Graham et al., 1993; Klingenberg &

Nijhout, 1999).

Variation in developmental stability has often been

shown to be caused by environmental variation (Parsons,

1990) and in some cases to have a genetic basis as well

(Parsons, 1990; Whitlock & Fowler, 1997; Gangestad &

Thornhill, 1999). Developmental stability can in principle

be decomposed into developmental noise, factors that

cause variation in development, and developmental

homoeostasis, processes that damp out the effects of

developmental noise (Palmer, 1996; Leung & Forbes,

1997). In practice these are usually indistinguishable, so

they are considered together here.

One must model at least four kinds of variances to

investigate the relationship between variation in devel-

opmental stability and variation in asymmetry. The most

familiar of these is the variance of asymmetry itself,

which I symbolize r2. The variance of asymmetry

depends on the variance in the traits from which

asymmetries are calculated, that is, on the developmental

variance, VD. VD is the converse of developmental

stability. In addition, the variance of sides may contain

measurement error, Ve. The fourth sort of variance is

variation in the developmental variance, which has not

been explicitly included in previous analyses.

I assume that each individual offers two or more

examples or realizations of the same trait, S, which I

will refer to as `sides', although their spatial arrange-

ment is not important. On the ith individual, the

S-values are drawn independently from the same

normal distribution with variance VD. The mean of this

distribution must be much greater than Ö(VD) in order

to preserve approximate normality but is otherwise free

to vary. For simplicity, I assume that the mean of the

distribution of sides is uncorrelated with VD. The

developmental variance of the ith individual will be

represented as VDi. It may consist of variation caused by

both genotype and environment. I consider two statis-

tics to measure asymmetry. First is the absolute value of

the difference between sides FAi � |Si1 ± Si2|. Second is

the variance of sides

s2
i �

Pn
j�1

Sij ÿ �Si

ÿ �2

nÿ 1
; �1�

where n is the number of `sides' measured. The variance

of sides has statistical properties superior to those of FA,

even when there are only two sides (Palmer & Strobeck,

1986).

My goal is to model the variance in asymmetry as a

function of population variation in developmental

variance, VVD
, so we need to consider what the

distribution of VD would look like. The family of

distributions I have chosen to represent this situation is

shown in Fig. 1. Before I give the mathematical basis

for these distributions, I give the following intuitive

justi®cation.

Fig. 1 Shape of the gamma distribution for

different values of a, the shape parameter.

All of these distributions have a mean of 1,

which was accomplished by setting b � 1/a,

where b is the scale parameter.
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The choice of a distribution for developmental vari-

ances, VD, must take into account the fact that a variance

cannot be negative. Consider a series of populations with

the same mean developmental variance, �V D, but that

differ in the population variance of developmental

variance, VVD
. When VVD

is small (as shown in the curve

labelled a � 400 in Fig. 1) the distribution can be nearly

symmetrical, as it is very unlikely that a value will fall

near VD � 0. However, as the population variance of VD

increases, the fact that VD cannot be negative has a larger

and larger effect on the distribution. If the mean is to be

held constant, the lack of negative values means that the

likelihood that a value falls between zero and the mean

must increase to compensate for the unconstrained tail of

large values to the right of the mean. The result is that

the distribution must become increasingly skewed as the

variance goes up (represented by decreasing a values in

Fig. 1), and the mode of the distribution must shift to the

left. When VVD
is very large relative to the mean, the

mode is very close to 0 but balanced by an increasingly

long tail of large VD values.

A distribution that has these properties is the gamma

distribution, which is only de®ned for values of VD > 0.

For the gamma, the probability that individual i has

developmental variance VD is

f VD�i� � � 1

C�a�ba V aÿ1
D�i eÿ

VD�i
b ; �2�

where G() denotes the gamma function. The gamma

distribution has two parameters, a and b. A principal

attraction of the gamma distribution is the variety of

shapes it can assume, depending on the value of the

`shape' parameter a. When a is large, the gamma

approaches a normal distribution. Both the exponential

and the v2 distributions are special cases of the gamma

distribution. b is the `scale' parameter. The mean of the

gamma distribution is ab, and the variance is ab2 � VVD
.

Note that the coef®cient of variation of a gamma-

distributed variable such as VD is

CVVD
� 100���

a
p : �3�

In addition to the developmental variance, VD, I

assume that the observed variance of S may also include

measurement error, Ve. Measurement error is assumed to

be constant over all individuals. To incorporate measure-

ment error, the distribution Vi � VD,i + Ve can be mod-

elled as a gamma distribution with a minimum value at

Ve, rather than 0.

Most elements of this model are shown in Fig. 2, which

shows the distribution of the developmental variance, VD,

sides S, and FA for two different distributions of VD. The

®rst row of the ®gure shows the distributions of VD. On the

left, a � 0.5 resulting in a highly skewed distribution with

a high CV; the column on the right shows a � 100, a fairly

symmetrical distribution with a low CV. Measurement

error is assumed to be absent. The second row of the plots

shows distributions of sides for representative values of VD.

The mean of the sides is always equal to 10, and the

distributions are always normal. In each case, the upper

right panel of each triplet gives the distribution for a value

of VD at the 95th percentile of the distribution, the lower

left panel gives the distribution for a value of VD at the 5th

percentile of the distribution, and the middle panel shows

the value at the median value of VD. For the small a value,

the difference in the distributions of S is immediately

apparent; the distribution at the 5th percentile has such a

small variance that the peak is off the scale chosen. Note

that the 95th percentile for this distribution is at VD � 6.05,

emphasizing the presence of a long tail of large VD values

that is not otherwise apparent in the ®gure. For the large-a
case, however, the distributions of S are so similar that no

difference is apparent to the eye.

These distributions of S will not be observed directly, as

each individual has only two sides. Instead, we directly

observe the distribution of sides in a population of

individuals, where each individual has a different devel-

opmental variance drawn from the distributions at the

top of the ®gure. This distribution is shown in the third

row of the ®gure. Note that the distribution with small a
results in a kurtotic distribution of sides, whereas the

large-a case has a nearly normal distribution of sides. This

kurtosis is expected because the distribution is a combi-

nation of normal distributions with very different vari-

ances (Wright, 1968; Houle, 1997; Leung & Forbes, 1997;

Gangestad & Thornhill, 1999). Finally, we calculate FA

by taking the absolute value of the difference in two sides

of the same individual, resulting in the peaky, long-tailed

distribution of FA in the small-a case, and a distribution

close to the half normal in the large-a case.

Given this model, we are interested in how informative

these measures of asymmetry are concerning the devel-

opmental variance of an individual, when individuals

vary in VD. As pointed out by Whitlock (1996, 1998) a

good measure for this purpose is the repeatability,

symbolized Â, the proportion of the variance in asym-

metry that is due to real differences in developmental

variance. The repeatability sets an upper limit both to

the heritability of asymmetry and to the correlation

of asymmetries of different structures on an individual.

To calculate the repeatability of a measure of asymmetry,

we need to know the total observed variance in asym-

metry in the whole population, rT
2, and the realization

variance, rR
2, the variance in observed asymmetry

among individuals with the same VD values. This rR
2

term includes any measurement error. The remaining

variance, rI
2, is the true variance among individuals

remaining after the realization variation is removed. By

de®nition, rT
2 � rR

2 + rI
2.

Note that both Whitlock (1998) and Van Dongen

(1998b) treat the parameter rI
2 as the variance in devel-

opmental stability. (Their notation differs from mine: rI
2

is VDS in Whitlock; Vind in Van Dongen.) I reserve the

term developmental stability for the inverse of the
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developmental variance of sides, VD, and the term variance

in developmental stability for the variance of develop-

mental stability, VVD
� ab2. Although in some cases (see

below) VVD
� rI

2, de®ning some aspect of the variance in

symmetry as developmental stability risks losing track of

the important distinction between developmental stability

and the effects it has on a particular phenotype.

Mathematical results

The expected value of FAi is

E�FAi� � FAi � 2
���������������������������
VD�i � Ve� �=p

p
�4�

and the variance is

Var�FAi� � 2 VD�i � Ve� � pÿ 2

p
; �5�

where the expectations are over hypothetical replicate

individuals with the same VD,i values. The realization

variance is

r2
R�FA � E

�pÿ 2�
p

2 VD�i � Ve� �
� �

� 2�pÿ 2�
p

Ve �
Z1
0

VD�i f VD�i� �dVD�i

0@ 1A

Fig. 2 Relationship between the distribution

of the developmental variance, VD, and the

distribution of sides, S, and ¯uctuating

asymmetry, FA. The top two rows give the

theoretical distributions of VD and S, while

the last two rows are distributions of 100 000

simulated observations. The simulated dis-

tributions are splined to smooth the observed

values. See text for additional explanation.
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� 2�pÿ 2�
p

ab� Ve� �: �6�

The other variance components cannot be obtained in

closed form when there is measurement error, so I ®rst

consider the case of no measurement error, Ve � 0. Then

the mean FA is

FA � E 2
�������������
VD�i=p

ph i
� 2���

p
p

���
b

p
G �7�

where

G � C�a� 1=2�
C�a� : �8�

The total variance in FA is

r2
T �FA �

Z1
0

Var FAN�i� � � E FAi� �� �2ÿ �
� f VD�i� �dVD�i ÿ FA

2

� 2abÿ FA
2

� 2b aÿ 2G2

p

� �
: �9�

Finally, the true variance in FA among individuals can be

obtained as the difference between eqns 9 and 6,

r2
I�FA � b�aÿ G2� 4

p
: �10�

The repeatability of FA when there is no measurement

error is then

<FA � r2
I�FA

r2
T �FA

� a=G2 ÿ 1
ap

2G2 ÿ 1
: �11�

The results in eqns 6±11 were checked by simulations

in SAS (results not shown; SAS Institute, 1990).

Although I was not able to obtain general analytical

results for the gamma distribution with error variance,

numerical results were obtained by numerical integra-

tion of eqns 6 and 9 in Maple V (Waterloo Maple, 1997),

with Ve + VD.i substituted for VD.i.

It is also useful to consider the coef®cient of variation

of FA itself, which is readily measured (e.g. Whitlock,

1996). For the case of no error variance,

CVFA � 100

�����������������
ap

2G2
ÿ 1

r
: �12�

Just as Whitlock showed that the maximum repeatability

of FA measures is a function of CVFA, eqn 12 can be

solved iteratively to yield an estimate of a, and CVVD
from

CVFA.

Because the alternative measure of asymmetry, s2, is

a variance, it follows a v2 distribution with n ± 1

degrees of freedom, and therefore has expected value

VDái + Ve, and variance 2(VDái + Ve)
2/(n ± 1). The mean

is therefore just �V D + Ve, or ab + Ve. The realization

variance is

r2
R�S2 � 2

nÿ 1
ab2�a� 1� � 2abVe � V 2

e

ÿ �
; �13�

and the total variance is

r2
T �S2 � 2

nÿ 1
ab2�a� 1� �nÿ 1�=2� � 2abVe � V 2

e

ÿ �
:

�14�
Taking the difference between eqns 13 and 14 gives the

individual variance r2
I�s2 � ab2. Thus, the true variance of

sides among individuals is the variance in developmental

variance. The repeatability is then readily calculated as

<s2 � r2
I�s2=r2

T�s2 . These results were checked by simula-

tions in SAS (results not shown; SAS Institute, 1990).

Numerical results

Figure 3 shows ÂFA, the repeatability of FA as a function

of CVVD
, the coef®cient of variation of developmental

variance. In all cases, the mean developmental variance

was held constant at 1. The small graphs along the top

show the very wide range of distributions considered,

from symmetrical distributions with small CVs on the left

to highly skewed distributions with a very strong mode at

0 on the right. The chief result is that ÂFA increases rather

slowly with CVVD
. Only when CVVD

is very large does the

repeatability reach substantial values. The effect of

measurement error, Ve, on repeatability is shown in the

lower curves in Fig. 3. The range of measurement error

considered is quite large; when Ve � 1 the variance due

to measurement error is as large as the mean variance of

sides. Increasing measurement error lowers the repeat-

ability.

Figure 4 shows the coef®cient of variation of ¯uctu-

ating asymmetry, CVFA, values calculated for the same

parameter set used in Fig. 3. When a is large and the

coef®cient of variation of developmental variance, CVVD
,

is small, CVFA is very close to the theoretical minimum of

Ö[(p ± 2)/2] » 76%, which follows from eqns 4 and 5.

Only when CVVD
is very large does CVFA increase

substantially. Increasing measurement error lowers CVFA,

as it increases the mean ¯uctuating asymmetry, as well as

the variance.

Figure 5 shows <s2 , the repeatability of s2, the alter-

native estimator of asymmetry, for the same parameter set

used in Figs 3 and 4. The overall shape of these curves is

similar to that for ÂFA, in that the repeatabilities only

become substantial when the coef®cient of variation of

developmental variance is quite large. <s2 is always lower

than ÂFA, although this difference becomes less marked

when Ve is large. One advantage of s2 as a measure of

asymmetry is that it can incorporate information on more

than two sides. Figure 6 shows how repeatability increases

with n, the number of sides measured. This relationship

emphasizes the usefulness of organisms with multiple

realizations of traits per individual for the investigation of

developmental stability (Leung et al., 2000).
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Discussion

In this paper I have extended a standard model of

¯uctuating asymmetry to explicitly include variance in

the developmental stability parameter (here represented

by its converse developmental variance) assumed to

underlie variation in asymmetry. The main new result of

the model is the very weak relationship between

Fig. 3 Repeatability of FA measures as a

function of the coef®cient of variation of

developmental variance, CVVD
, and mea-

surement error, Ve. The graphs along the top

are probability density functions of develop-

mental variance for representative distribu-

tions of CVVD
, the shape of which is

determined by a as CVVD
� 1/Öa. Numerical

integration could not be carried out for large

values of a and Ve, so curves for these

combinations are truncated in the ®gure.

Fig. 4 The observed coef®cient of variation

of FA, CVFA, as a function of the coef®cient of

variation of developmental variance and

measurement error, Ve.
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variance in developmental stability and ¯uctuating

asymmetry. Only when the underlying variance in

developmental stability is enormous does that variation

become apparent in measures of asymmetry. To see this

pattern, note (in Figs 3 and 5) that, in the best case when

there is no error variance, the repeatability of each

Fig. 5 The repeatability of asymmetry esti-

mated as s2 as a function of the coef®cient of

variation of developmental variance and

measurement error, Ve. Parameter values are

the same as Fig. 3.

Fig. 6 The repeatability of asymmetry esti-

mated as s2 as a function of the coef®cient of

variation of developmental variance and the

number of sides measured, n.
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asymmetry measure reaches the very modest value of

20% only when the coef®cient of variation of develop-

mental variance is about 100%. A coef®cient of variation

of 100% means that the standard deviation is equal to

the mean. Since variances must be positive, this 100%

coef®cient of variation is accompanied by a highly

skewed distribution of developmental variances. Perhaps

even more striking is that the coef®cient of variation of

FA in the population is only about 30% higher than its

minimum expected value when the coef®cient of vari-

ation of developmental variance is 100%, as shown in

Fig. 4.

One reason for presenting results in terms of repeat-

ability is that it sets an upper limit to the heritability of

asymmetry. If the heritability of developmental variance

is 1, the heritability of asymmetry is its repeatability. In

reality, there is ample evidence that individuals differ in

developmental stability because of environmental factors

as well as genetic ones (Parsons, 1990), and the herita-

bility of asymmetry would certainly be lowered as a

result, perhaps quite substantially. When the heritability

of developmental variance is less than 1, we can be sure

that the heritability of asymmetry will be less than its

repeatability. One useful and simple result is that adding

a given environmental variance to the developmental

variance lowers the repeatability of asymmetry in exactly

the same manner as does measurement error. For

example, the line corresponding to Ve � 1 in Fig. 3 is

equivalent to a heritability of asymmetry of 0.5. It is

therefore not surprising that asymmetry seems to have

very low heritability, usually less than 5% (Whitlock &

Fowler, 1997; Gangestad & Thornhill, 1999).

Another very useful interpretation of the repeatability

is as the correlation of asymmetry values for sets of traits

with the same developmental variances. If the develop-

mental variances of different traits are proportional ± that

is the variance of one trait is a multiple of the variance in

some other trait ± the correlation of asymmetries of these

traits on the same individual will equal the repeatability.

However, different traits on an individual may differ in

their developmental stabilities for a variety of reasons

(Mùller & Swaddle, 1997, pp. 53±55; Leung & Forbes,

1997), so correlations may be substantially less than the

repeatability. Gangestad & Thornhill (1999) reviewed a

number of large data sets, however, and argued that

correlations in FA among traits are close to those

expected on the basis of kurtosis and average trait

repeatabilities under their model. Future work compar-

ing repeatabilities estimated from CVs and from kurtosis,

trait correlations, and the heritability of FA in the same

population could provide a means for testing models of

FA, such as the one presented in this paper.

Given the general result that asymmetry rises slowly

with the variation in developmental stability, it is

interesting to observe that the coef®cient of variation of

¯uctuating asymmetry is sometimes greater than 100%

(see, e.g., Whitlock, 1996; Van Dongen, 1998a). Above

CVFA � 100%, the CV of developmental stability rises

extremely rapidly, as shown in Fig. 4. For example,

CVFA � 170% for a sample of 188 tarsus lengths in the

olive sunbird, Nectarina olivacea (Van Dongen, 1998a).

This result implies a CV of developmental stability of

220%. On the other hand, the available data sets with

the largest sample sizes imply modest CVs for develop-

mental stability (Gangestad & Thornhill, 1999).

To compare these inferred coef®cients of variation for

developmental stability with those for other traits, CVFA

should be divided by two, because they have units of the

trait squared (Lande, 1977; Houle, 1992). The phenotypic

coef®cients of variation of morphological traits are

generally between 2 and 20%, whereas ®tness compo-

nents have values generally between 10 and 100%

(Houle, 1992). Thus, in cases such as the olive sunbird

(Van Dongen, 1998a), where the predicted variation in

developmental stability is extremely high, either the

model is false, or developmental stability is sometimes

more variable than for any previously studied traits.

Asymmetry has attracted attention because it potentially

captures information about developmental stability,

which may be of fundamental importance to ®tness. If

developmental stability has higher variance than typical

for ®tness, this raises an interesting paradox.

The standard model makes a number of questionable

assumptions to the standard model that could increase

the CVFA when violated. First, the model assumes that

the distribution of sides is normal for a given level of

developmental stability. The distribution of sides could

instead be a mixture of different distributions, perhaps

re¯ecting discrete events that de¯ect development into

alternative pathways. For example, asymmetrical use,

injury, starvation, or other traumas might have large

effects on development, although not necessarily so large

as to lead to the rejection of an individual as a statistical

or biological outlier. Extreme individuals have a dispro-

portionate impact on measures of variation. For example,

Whitlock (1996) notes that exclusion of a single highly

asymmetrical individual lowers CVFA in his sample of

wolf jaws from 145% to about half that, close to the

minimum value expected if there were no variation in

developmental stability. In correlational studies, extreme

individuals can account for much of the apparent power

of a model to explain the data (Leung & Forbes, 1997).

The developmental model of Klingenberg & Nijhout

(1999) provides a very different explanation for how

normality could be violated. These authors point out that

developmental stability is likely to be an epiphenomenon

of the parameters of the developmental system, rather

than a single property of that system. They expect that

variation in the fundamental developmental properties

will have nonlinear effects on morphology, which could

easily lead to non-normal distributions of sizes. Similarly,

nonlinear interactions during development could result

in distributions of developmental variances that are very

different from the gamma distribution I assumed.
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Another possibly incorrect assumption is that each side

develops independently. Because sides usually develop

simultaneously on the same organism, there are oppor-

tunities for interactions during development (Graham

et al., 1993; Klingenberg & Nijhout, 1998). The most

plausible kind of interaction would be competition for

resources during development (Klingenberg & Nijhout,

1998). This would tend to cause antisymmetry and lower

CVFA (Van Dongen, 1998a) and so cannot help to explain

the high values that raise questions under the present

model. The ®nding that some distributions of FA are

consistent with condition-dependent antisymmetry

(Rowe et al., 1997) may indicate that models of this type

should be taken seriously.

In addition to these assumptions common to the

standard models of asymmetry, I also had to make an

assumption about the actual distribution of developmen-

tal stabilities. I chose the gamma distribution, but other

distributions, such as the log-normal, may be worth

considering. My principal conclusion, that the usefulness

of FA as an indicator of individual developmental

stability is poor unless the variance of developmental

stability is extremely large, does not depend on the

choice of distribution. Previous numerical or simulation

studies using mixtures of two developmental stabilities

(Houle, 1997), three developmental stabilities (van

Dongen, 1998b), and normal, half-normal and uniform

distributions of developmental stabilities (Gangestad &

Thornhill, 1999) yield similar conclusions.

In summary, this elaboration of a basic model in

asymmetry studies is consistent with many of the largest

experimental studies in suggesting that the proportion of

the within-population variation in ¯uctuating asym-

metry that can be explained by variation in develop-

mental stability is small (Gangestad & Thornhill, 1999). If

the variation in developmental stability is typical of that

found for other sorts of traits, then the value of FA as an

indicator of developmental stability is low. On the other

hand, a number of smaller studies report distributions of

FA that imply enormous variation in developmental

stabilities (Whitlock, 1996; Van Dongen, 1998a; Lens &

van Dongen, 1999; Lens et al., 1999). In these cases, we

need either to explain how the variance in developmen-

tal stability can be so high or to modify this standard

model of the relationship between developmental stabil-

ity and ¯uctuating asymmetry.
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