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THE DIMENSIONALITY OF GENETIC VARIATION FOR WING SHAPE
IN DROSOPHILA MELANOGASTER
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Abstract. Absolute constraints are limitations on genetic variation that preclude evolutionary change in some aspect
of the phenotype. Absolute constraints may reflect complete absence of variation, lack of genetic variation that extends
the range of phenotypes beyond some limit, or lack of additive genetic variation. This last type of absolute constraint
is bidirectional, because the mean cannot evolve to be larger or smaller. Most traits do possess genetic variation, so
bidirectional absolute constraints are most likely to be detected in a multivariate context, where they would reflect
combinations of traits, or dimensions in phenotype space that cannot evolve. A bidirectional absolute constraint will
cause the additive genetic covariance matrix (G) to have a rank less than the number of traits studied. In this study,
we estimate the rank of the G-matrix for 20 aspects of wing shape in Drosophila melanogaster. Our best estimates
of matrix rank are 20 in both sexes. Lower 95% confidence intervals of rank are 17 for females and 18 for males.
We therefore find little evidence of bidirectional absolute constraints. We discuss the importance of this result for
resolving the relative roles of selection and drift processes versus constraints in the evolution of wing shape in
Drosophila.
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Heritable variation is the raw material for evolution. The
pattern of heritable variation and covariation determines the
probability that a given phenotype will evolve under drift
(Lande 1976; Arnold et al. 2001), can deflect the response
to directional selection away from the direction of selection
(Lande 1979; Phillips and Arnold 1989), and can potentially
alter the equilibrium state reached on a multipeaked fitness
surface (Price et al. 1993; Steppan et al. 2002). Genetic co-
variation is usually an evolutionary constraint, because it
restricts the rate of evolution in most directions in the space
of phenotypes (Arnold 1992). Therefore, one of the goals of
evolutionary quantitative genetics is to quantify the oppor-
tunities and constraints inherent in patterns of genetic co-
variation among traits (e.g., Roff and Mousseau 1999; Step-
pan et al. 2002). Much of this work has focused on quanti-
tative constraints (Houle 2001): the numerical values of ge-
netic covariances and correlations or derived measures such
as heritability. Over relatively short time scales, quantitative
constraints can profoundly affect the state of a population
(Steppan et al. 2002). Conversely, if selection for a particular
optimum state persists long enough, quantitative constraints
will be overcome (Via and Lande 1985; Zeng 1988).

In contrast, absolute constraints exist where a lack of ge-
netic variation precludes a response to selection altogether
(Via and Lande 1985; Houle 1991, 2001; Kirkpatrick and
Lofsvold 1992). Such constraints are frequently invoked to
explain the limited variety of realized biological forms (e.g.,
Gould and Lewontin 1979; Brooks and McLennan 1991), but
are rarely the subject of direct study at the genetic level. A
few authors have outlined programs for identifying such con-
straints (e.g., Maynard Smith et al. 1985; Kirkpatrick and
Lofsvold 1992), but there have been few rigorous attempts
to put these programs into practice. The extent of such ab-
solute constraints and their importance in evolution is there-
fore unknown. This is a pity, because absolute constraints
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allow us to make strong macroevolutionary predictions con-
cerning what cannot be attained by natural and artificial se-
lection. A lack of variation for a phenotype would provide
important evidence for the prevalence of constraints in evo-
lution. Conversely, rigorous demonstration that absolute con-
straints do not exist indicates that other factors, such as nat-
ural selection, must be found to explain limitations on phe-
notypic evolution.

We consider there to be three categories of absolute evo-
lutionary constraints: (1) complete lack of phenotypic vari-
ation; (2) unidirectional absolute constraints; and (3) bidi-
rectional absolute constraints. If a trait lacks phenotypic var-
iation, there is by definition no heritable variation, and further
evolution is impossible. These constraints have been invoked
when there are clear developmental or mechanistic reasons
why phenotypes exist in one lineage but cannot in a related
lineage (Alberch and Gale 1983; Alberch 1985) and in some
rare cases have been quantified directly (Bradshaw 1991).
Unidirectional constraints are caused by a lack of alleles that
extend the range of phenotypes beyond some limit. Evolution
in one direction is still possible. Such a constraint could
explain cases where persistent artificial selection reaches a
plateau where further response does not occur (Falconer and
Mackay 1996), but reverse selection often creates a response
in the opposite direction. The existence of trade-offs among
fitness components are often assumed to be a consequence
of a limit reached where there is no heritable variation for
further increases in fitness (Lande 1982; Houle 1991; de Jong
and van Noordwijk 1992). Finally, a bidirectional absolute
constraint occurs when a phenotypically variable trait entirely
lacks additive genetic variation (Via and Lande 1985). Be-
cause additive genetic variation is a prerequisite for a trait
to respond to selection, there can be no response to selection
in either direction. If such constraints are common and persist
through time, the existence of variation for a trait is not a
strong predictor of its ability to evolve. Conversely, if there
are no bidirectional constraints on a phenotype, this makes
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a similarly strong prediction: Where variation can be mea-
sured, evolution can proceed.

The possibility of bidirectional absolute constraints may
appear to be at odds with the robust result of quantitative
genetics that nearly all features of organisms possess additive
genetic variation (Mousseau and Roff 1987; Roff and Mous-
seau 1987; Houle 1992; Lynch and Walsh 1998). This is not
the case, as the pattern of covariation may mean that some
trait combinations lack genetic variation. This possibility be-
comes more likely the larger the number of traits considered.
For example, it may not be possible to increase one trait
while holding others constant. It is therefore essential to test
for constraints in a multivariate context.

To test for bidirectional constraints, we need to consider
the geometry of variation. Each trait that is measured defines
a direction in what we call ‘‘phenotype space,’’ which has
as many dimensions as the number of traits, say n. The mean
phenotype defines a point in that n-dimensional space. The
question we want to ask is whether the breeding values of
the genotypes studied extend in all directions from this cen-
tral point in phenotype space, that is, fill out all n possible
dimensions. Alternatively, there may be some directions in
phenotype space where no breeding values different from the
mean exist. An easy-to-visualize example is in a three-trait
phenotype space where a bidirectional absolute constraint
exists if all the breeding values fall on a plane in the space,
rather than the usual three-dimensional ellipsoid. In this case,
the variation has a dimensionality of two. In linear algebra,
dimension is captured in the rank of the n-dimensional var-
iance-covariance matrix that summarizes the data, where rank
is the number of linearly independent rows in the matrix
(Strang 1988). Whenever a particular direction lacks varia-
tion, the value of one row of the matrix will be predictable
from the remaining rows. Thus, bidirectional absolute con-
straints cause an n 3 n trait G-matrix to have rank , n, and
may therefore be quantified by studying rank of a G-matrix.
This is the goal of our study—to quantify the rank of a G-
matrix in enough detail to meaningfully explore the possi-
bility of bidirectional absolute constraints.

It is important to note at the outset that one can never
demonstrate absence in a statistical context. Instead, what
one can do is design powerful studies for rejecting the hy-
pothesis of less-than-full rank G-matrices. Demonstrating a
full-rank G-matrix would then constitute powerful evidence
against the sort of simple constraint hypothesis we have out-
lined. Failure to demonstrate a full-rank matrix would allow
for the possibility of bidirectional constraints. The more phe-
notypic dimensions the null hypothesis cannot be rejected
for, the more attractive a bidirectional constraint hypothesis
would become.

This framework puts a substantial burden on the design of
an experiment to look for constraints. To be informative, the
experiment must first examine a large number of traits. A
bidirectional constraint can only be detected when the number
of traits analyzed is greater than the true rank of G. Second,
the chance of finding constraints would be maximized by
exhaustively sampling a restricted aspect of the phenotype,
rather than sampling many diverse phenotypes such as size,
a behavior, a life-history trait, and so on. Third, statistical
power for finding variation in any one trait should be high.

Failure to find variation in traits with high error or realization
variances could readily be attributed to a lack of power, rather
than an absence of variation. Fourth, the overall sample size
of the study must be much larger than n. Otherwise, it is
likely that the observations will by chance fall in a space of
less than n dimensions. This is known as the ‘‘curse of di-
mensionality.’’

There has been speculation that bidirectional constraints
are common based on a number of studies that have found
G-matrices with rank less than n (Bailey 1956; Leamy 1977;
Atchley et al. 1981). However, many of these studies used
relatively small sample sizes. None of them present confi-
dence intervals on the rank of G. Without a confidence in-
terval, it is difficult to assess whether an estimated absolute
constraint may simply reflect low power. One exception is
the study of Kirkpatrick and Lofsvold (1992). The authors
used published G-matrices from studies of growth in mice,
chickens, and two populations of sheep to estimate devel-
opmental trajectories and confidence intervals for the ranks
of these matrices. For each of these four cases, the authors
estimated the 95% confidence interval for rank as substan-
tially less than n. They conclude that there are considerable
constraints for growth trajectories and some trajectories are
evolutionarily forbidden. Because n ranged from four to nine
in these analyses, the results are consistent with the suppo-
sition that the level of absolute constraints can be quite high.

To address these issues, we have undertaken a study of
genetic variation in the shape of the Drosophila melanogaster
wing. Wing shape is particularly interesting because it is both
highly conserved in the family Drosophilidae (Houle et al.
2003) and shows additive genetic variation within D. mela-
nogaster (e.g., Whitlock and Fowler 1999). A number of
indirect lines of evidence indicate that the level of absolute
constraint on wing shape may be low. Artificial selection on
many specific wing shape indices has consistently generated
large evolutionary responses (Weber 1990, 1992; Houle et
al. 2003). Populations and inbred lines are readily distin-
guished by shape (e.g., Cavicchi et al. 1991; Imasheva et al.
1995; Birdsall et al. 2000; Gilchrist et al. 2000). In addition,
there are several characterized genetic pathways involving
many genes that could affect aspects of wing shape (Bier
2000; Mohler et al. 2000; Held 2002; Lunde et al. 2003;
Cook et al. 2004). Several independent quantitative trait loci
(QTL) analyses (Weber et al. 1999; Zimmerman et al. 2000;
Weber et al. 2001; Mezey et al. 2005) have indicated that
the number of loci responsible for observed variation in wing
shape is quite large. However, none of these lines of evidence
directly addresses the existence of bidirectional constraints,
as the effects of the variation observed may be concentrated
in less than the full number of phenotypic dimensions.

Our aim in this study is to directly estimate the dimen-
sionality of genetic variation in the wing, and therefore to
see if we can reject the possibility that bidirectional absolute
constraints exist for the Drosophila wing.

MATERIALS AND METHODS

Stocks and Breeding Design

The laboratory population was founded from approxi-
mately 140 isofemale lines derived from flies captured on
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FIG. 1. Identity of the landmarks used in this study.

March 12, 2002, at Wabasso, Indian River County, Florida.
The stock was maintained on cornmeal, sucrose, and brewer’s
yeast medium in bottles at 258C with alternating 12-h light
and dark cycles. The flies were transferred to fresh containers
every two weeks. Initially, and through the first half of the
study, the stock was maintained as isofemale lines. These
were later pooled into a single breeding population, which
was maintained in 10 bottles at a density of approximately
40 parental flies/bottle. At each transfer, adults from different
bottles were mixed.

A half-sib breeding design was carried out in 36 temporal
blocks, each consisting of four to six half-sib families. For
the blocks 1–17, males were chosen at random from isofemale
lines and were mated to four or five virgin females, each from
a different isofemale line. Isofemale lines should become
progressively more inbred over time. To check whether in-
breeding might have affected the estimates from this part of
the experiment, we regressed the sire component of variance
from sibling data on block number. There was no evidence
of a relationship between these (analysis not shown), sug-
gesting that inbreeding remained low. For blocks 18–36, a
male was mated to four or five virgin females, where each
individual was selected at random from the pooled popula-
tion. Comparison of data from the two parts of the experiment
similarly suggested that there were no differences between
them.

In the first part of the experiment, parents were reared in
vials, and in the second part in bottles. Virgin parents were
collected within 10 h of eclosion, aged for two to six days,
then mated for three days. Female parents were allowed to
lay eggs for two days in each of two replicate vials. One
wing from each parent and from approximately five offspring
of each sex from each vial were measured. The upper surface
of left wings was measured whenever possible. When the left
wing was damaged, the upper right wing was recorded in-
stead.

Wing Measurement and Morphometrics

Wing measurement was performed using WingMachine,
an automated image analysis system, the details of which are

described elsewhere (Houle et al. 2003). WingMachine con-
sists of a suction device that holds the wing of an anesthetized
fly between a slide and a cover slip to allow a video image
of the wing to be captured. The image of each wing plus two
landmarks provided by a human observer were passed to an
image processing system which fits B-splines (Lu and Milios
1994) to all wing veins posterior to the humeral break, plus
the outline of the wing. Twelve intersections of these splines
define the landmark coordinates used in these analyses (Fig.
1).

The data were aligned by generalized Procrustes least
squares superimposition (Rohlf and Slice 1990) implemented
in the tpsRegr program (Rohlf 1998b). In this approach,
wings are first scaled to unit centroid size, where centroid
size is the square root of the sum of squared distances of
each landmark from the centroid of each wing. The centroid
is the mean of the landmark coordinates for that specimen.
Scaling by centroid size is optimal for minimizing the dif-
ferences in wing size when variances are equal at each land-
mark. After scaling, the wings were aligned by finding the
minimum squared distance between the landmarks that can
be achieved by translating each landmark polygon to a com-
mon centroid position and then rotating the wings with re-
spect to one another. Separate superimpositions were run on
males and females because there is a difference in shape
between the sexes. The result of the superimposition is that
each wing is represented by the x- and y-coordinates of the
displacement of each landmark from the centroid, measured
in units of centroid size.

Following alignment, a robust covariance matrix was fit
to the data using the minimum-volume ellipsoid approach
(Rousseeuw and van Zomeren 1990), as implemented in the
S-Plus program cov.mve (Insightful Corporation 2001). This
covariance matrix was then used to identify potential outliers,
which were then checked by a human observer and corrected
when necessary using the digitization program TPSdig (Rohlf
1998a). Manual adjustments were performed by two observ-
ers. Landmark adjustment introduced negligible error and
was ignored in the subsequent analysis. Throughout this pa-
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per coordinate data has units of centroid size in mm 3 104,
and centroid size has units of 1023 mm or 1 mm.

Parameter Estimation

Approximately 20% of the D. melanogaster genome is sex
linked, which makes it important to take sex linkage into
account during analysis. Furthermore, sex limited effects are
commonly identified, making it potentially important to sep-
arate the genetic effects in males and females. To provide
the necessary degrees of freedom to undertake such analyses,
we combined information on parent-offspring covariances
with information from the standard nested sibling design.

For parent-offspring analyses we estimated the covariance
between parent and the mean of their same-sex offspring
directly (Fry 2004) using restricted maximum likelihood
(REML) implemented in the SAS Mixed procedure (SAS ver.
8.01, SAS Institute, Inc., Cary.), taking into account block and
generations as fixed effects. For the offspring data, the x- or
y-landmark displacement z was decomposed as follows:

z 5 m 1 b 1 s 1 d 1 v 1 e ,i.j.k.l.m i i.j i.j.k i.j.k.l i.j.k.l.m (1)

where m is the population mean; b, s, d, v are the block, sire,
dam, and vial effects; and e is the residual error. With the
current half-sib design, every level is nested within the upper
level. All effects were treated as random except for block
effects, which were treated as fixed. The variances associated
with each component of the model were estimated using
REML in SAS Mixed (SAS ver. 8.01). We attempted to es-
timate variance and covariance terms in a single analysis (Fry
2004), but convergence problems, plus long run times, led
us to estimate the variance for each trait separately. Covari-
ance terms were calculated by estimating variance compo-
nents for the sum of two traits and then subtracting the var-
iance associated with each trait and dividing by two.

We estimated the causal components of (co)variance using
weighted least-squares (Cowley et al. 1986). A vector of
observational components, Y, was formed with (in order) the
parent-offspring covariances for females and males (Cpo·f,
Cpo·m) and sire, dam, vial, and error variances for females
(Vs·f, Vd·f, Vv·f, Ve·f), then the corresponding terms for males
(Vs·m, Vd·m, Vv·m, Ve·m). We formed the weight matrix W as a
block diagonal consisting of the estimated variances for Cpo·f,
Cpo·m, followed by the 4 3 4 matrices from the female and
male sibling analyses. Exploratory analyses suggested that
the differences in error and nonadditive variances between
the sexes were relatively insignificant for the coordinate data,
so we fit a vector of causal effects E that (in order) were an
additive genetic autosomal effect for each sex (VA·f, VA·m), an
X-linked additive effect for each sex (VAx·f, VAx·m), and com-
mon residual variances. These residual variances are (in or-
der) maternal (VM), vial (VV), and error (VE). The columns
of the design matrix for the additive terms were twice the
coancestries of the individuals whose covariances were es-
timated. With the observational and causal vectors in the
order given, the design matrix was

0.5 0 0.5 0 0 0 0 

0 0.5 0 0 0 0 0

0.25 0 0.5 0 0 0 0

0.25 0 0.25 0 1 0 0 0 0 0 0 0 1 0
X 5 . (2) 

0.5 0 0.25 0 0 0 1

0 0.25 0 0 0 0 0

0 0.25 0 0.5 1 0 0

0 0 0 0 0 1 0 
0 0.5 0 0.5 0 0 1 

The causal (co)variances were then estimated as E 5
(XTW21X)21XTW21Y using the IML procedure in SAS (ver.
8.01). In a few cases, the vial variances and the corresponding
values in the weight matrix were estimated as zero. We in-
corporated these zeroes in our estimates by setting the cor-
responding diagonal in the weight matrix to the average value
of the vial variance from other traits. When elements of E
were estimated as negative, they were set to zero, and the
remainder of E estimated again with the corresponding col-
umn of X deleted. The adequacy of the overall model was
tested comparing the weighted residual sums of squares to a
x2 distribution with 10 estimates 27 parameters 5 3 df
(Lynch and Walsh 1998). The significance of each term was
assessed by refitting the model with that term deleted and
comparing the change in sums of squares to a x2 distribution
with 1 df.

Estimation of Matrix Rank

The number of variable dimensions in wing shape space
at each level of causal hierarchy is equal to the rank of the
corresponding covariance matrix. The rank of a symmetric
matrix is equal to the number of nonzero eigenvalues, so to
estimate matrix rank, we used the distribution of the eigen-
values from principal components analysis (PCA).

To account for sampling error in this estimate, we also
estimated a confidence quantile for matrix rank by bootstrap-
ping. Because our method for estimating causal components
of variation uses all of the observational components of var-
iation (see Parameter Estimation above), we had to choose
a bootstrap method that did not bias the variation at any
observational level (parents and offspring, sires, dams, or
error [co] variances). Simulations showed that conventional
bootstrapping of the lower levels of the experiment (sires on
down) biased estimates at the lowest level bootstrapped
downward, with a corresponding bias of the next level upward
(results not shown). For example, bootstrapping sires only
biases the sire estimate downward. Bootstrapping at every
random level (sire, dam, flies within families) biases the error
variance downward and the dam level upward. These biases
lead to very inaccurate estimation of the causal components.
Our solution was to resample with replacement at the level
of blocks, preserving the structure of the families within each
block. The matrices of interest were then estimated for each
bootstrap sample and subjected to PCA. Eigenvalue quantiles
were estimated from the distribution of 1000 bootstraps. To
reduce run times, we fit a model without the vial variances.



1031WING-SHAPE DIMENSIONALITY

TABLE 1. Dimensionalities of simulated data. Each entry in the
table corresponds to a simulated dataset that was bootstrapped 100
times. The number of the eigenvector where . 95% of the boot-
strapped estimates are positive is the dimension of that dataset. The
numbers of simulated datasets in each row are unequal due to the
long run times of these simulations, plus the fact that each was run
on a different processor.

Expected eigenvalue1

9th eigenvector 10th eigenvector

Inferred dimensionality

8 9 10

0.00530 0.00140 0 2 21
0.00530 0.00042 0 24 2
0.00530 0.00014 0 27 0
0.00530 0.00004 0 22 0
0.00530 0.00001 0 24 0
0.00530 0.0 0 18 0
0.00176 0.00042 16 12 0
0.00053 0.00014 12 2 0
0.00017 0.00004 13 1 0
0.0 0.0 23 2 0

1 Expressed as a proportion of the expected variance accounted for by that
eigenvector.

This should affect the results very little, as the vial variances
were in most cases not significantly different from zero (see
Results). Our bootstrap estimator of rank is the number of
eigenvalues where the lower 5% quantile of bootstrap esti-
mates was greater than zero.

To assess the performance of our bootstrap estimator, we
analyzed simulated data. We simulated phenotypic values, z,
according to the following model:

z 5 m 1 b 1 g 1 e ,i.j.k i i.j i.j.k (3)

where m is the population mean; b, g, and e are the block,
genotypic, and environmental effects. To provide a relevant
comparison to our empirical results, we used the covariance
matrices at the block (B), additive genetic (G), and error (E)
levels estimated from our female data for the first five land-
marks (providing 10 traits) as parameters for these simula-
tions. Each matrix was decomposed into eigenvectors and
eigenvalues. At each level (B, G, E), 10 normal deviates
were drawn with the eigenvalues as variances, then this vector
rotated back into the phenotypic space using the appropriate
eigenvectors to obtain the vector of observations. To generate
G-matrices of less than full rank, the 10th or ninth and 10th
eigenvalues of the G-matrix were reduced or set equal to
zero. For the simulations reported, we simulated a half-sib
design with 40 blocks, four sires per block, four dams per
sire, and, four individuals per dam. Variance components
were estimated in Proc Mixed with block as a fixed effect.
Each simulated dataset was then bootstrapped 100 times at
the level of blocks, and the rank was estimated as described
above.

The results of these simulations are shown in Table 1. The
first line of Table 1 shows results where the full G-matrix
was simulated. For this parameter set, the simulated datasets
were large enough that our power to detect variation in all
10 dimensions was quite high. Other entries in the table show
cases where the 10th or ninth and 10th eigenvalues of the
G-matrix were reduced or eliminated. As the magnitude of
the smallest eigenvalues decreases, the bootstrap rank esti-
mates also drop, even when there was in fact some variation

present. When two eigenvalues are set to zero, two of our
25 bootstraps showed significant variation in the ninth ei-
genvector. This is a bit higher than the expected number based
on the 5% criterion used. Further analysis shows that these
are cases where the ninth eigenvalue was estimated to be
large and positive. Figure 2 shows that the proportion of
bootstrap estimates with positive eigenvalues is essentially
determined by the size of the estimate of the corresponding
eigenvalue in the full analysis of each dataset, rather than
the parameter value used to simulate the data. When the
bootstrap estimates are compared directly with the highest
ranked positive eigenvalue from the full analysis of each
simulated dataset, none of the bootstrap estimates were higher
than the best estimate and 39% were one or two ranks lower.

Rejected Methods for Estimating Matrix Rank

We also assessed the performance of other methods for
estimating matrix rank on simulated data (results not shown).
These methods performed poorly, either dramatically over-
or underestimating the true matrix rank. A number of heu-
ristic methods have been suggested for estimating the number
of eigenvalues that are not reflecting variation that is entirely
due to error (Jackson 1993). Of these, the only method with
any formal statistical justification is Bartlett’s test (Lawley
1956). This is a test of eigenvalue evenness and assumes a
model of independent and equal errors in the estimation of
each landmark dimension, which is incorrect for our dataset.
There is no biological reason that eigenvalues cannot be more
even than random, and therefore Bartlett’s test does not test
an interesting null hypothesis.

A second method is to test for significant mean sire family
variation along each of the PCs of the G-matrices using sep-
arate ANOVAs adjusted for multiple comparisons. Those PCs
for which the hypothesis of no significant sire variation can
be rejected indicate evidence for additive genetic variation.
The number of these PCs would therefore reflect the rank of
G. Analyses of simulated data indicated that this approach
tends to detect variation in all eigenvectors, even when the
true matrix is not of full rank. This is presumably because
of errors in the estimated direction of the PCs of G.

We also assessed the two methods proposed by Kirkpatrick
et al. (1990, their appendix C). Both use conventional esti-
mates of estimation error in the elements of the G-matrix to
test for significant variation in each dimension. For a sim-
ulated G-matrix with a true rank of 20 and a distribution of
eigenvalues close to that we observed, both of these methods
generally showed fewer than 10 eigenvalues with confidence
intervals that did not overlap zero, dramatically underesti-
mating rank. One potential source of the bias we observed
is that in expectation eigenvalues are constrained to be non-
negative and so have an asymmetrical distribution that the
Kirkpatrick approaches do not take into account.

RESULTS

Basic Information

The final dataset consisted of 175 half-sib families and 790
full-sib families. Some parents were lost or their wings dam-
aged before they could be measured, so wing data was ob-
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FIG. 2. Proportion of bootstrap estimates with positive eigenvalues (l) of a given rank, as a function of the estimate of corresponding
eigenvalue for the full simulated dataset, expressed as the proportion of variance accounted for by that eigenvector. Circles, l for the
10th eigenvector; triangles, l for the ninth eigenvector.

tained for 149 sires and 567 dams. A total of 8254 male and
8361 female offspring were measured.

Parents were smaller and more variable in size than off-
spring. Centroid size of male parents averaged 2.036 mm
(SD 5 0.071) and male offspring averaged 2.077 mm (SD
5 0.056), which is a highly significant difference. Female
parents averaged 2.355 mm (SD 5 0.091) and female off-
spring averaged 2.411 mm (SD 5 0.061), again a highly
significant difference in mean size. This difference in size is
probably due to the different rearing conditions of parents
and offspring. Females are also significantly larger than
males.

The parent sample had slightly and significantly higher
variance overall than the offspring sample, suggesting that
genetic parameters might need to be adjusted to reflect these
differences. The ratios of parental to offspring variances,
symbolized k, is shown in the online supplemental material
(Table S1; available online only at http://dx.doi.org/10.1554/
04-491.1.s1). The mean k for coordinate data is 1.13 for fe-
males and 1.05 for males. Regressions of offspring means on
parents were significantly different from zero (P , 0.0001)
for each of the 24 coordinates and centroid size (see online
Table S1). We calculated heritabilities using the conservative
assumption that both additive and phenotypic variances in
parents are k times the corresponding variances of offspring.
In this case, the regression estimates h2/(2 ). The averageÏk
heritability of coordinate position was 0.54 for females and
0.51 for males.

These high heritabilities are not explained by an allometric
relationship between coordinates and size. The average R2

value for the regression of the family means of each coor-
dinate on parent centroid size is only 2.2% (median 1.1%),

with a maximum of 9.8%, suggesting that most variation is
independent of size. Similarly, at the phenotypic level the
regression of coordinates on individual size within the off-
spring generation explains an average of 1.6% (median 5
0.6%) of the phenotypic variation within sex.

Choosing a Causal Model to Fit to the Data

Supplemental Tables S2 and S3 (available online only at
http:dx.doi.org/10.1559/04-491.1.s1) show the observational
components of variance. Most observational components are
much larger than their standard errors. The exception is vial
variances, which are generally small and rarely significantly
different from zero. The error variances for the coordinate
data are quite similar between the sexes for most traits. Over-
all, the average ratio of female to male error variance is 0.95.
A discrepancy of this magnitude is expected if there are X-
linked additive effects, as a larger proportion of the male X
variance is found in the error term, compared to female X
variance. To examine whether the differences in error vari-
ances are significant, we fit a causal model by least squares
that constrained the X-linked (the male contribution scaled
for dosage compensation; Cowley et al. 1986) and additive
variances to be the same in the two sexes, but fit different
parameters for the error and maternal variances. Significantly
better fit was obtained with different error variances in just
six of the 24 coordinates, the x and y for points 5, 6, and 11.
For point 5, the error variance was significantly higher for
females, while it was significantly lower in females for points
6 and 11. Overall, we regard an assumption of equal error
variances in the sexes over landmarks to be adequate, and
use this to obtain estimates of the causal variances below.
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TABLE 2. Causal components of variance. P-values shown for each term were obtained from the change in sums of squares when each
term is omitted from the model. The error variance was significant at P , 0.0001 in every case. VP.f and VP.m are the sex-specific
phenotypic variances, calculated as the sums of the appropriate sex-specific additive terms, plus VM, VV, and VE. Units for coordinates
are centroid size 3 104, while for centroid size the unit is log(mm 3 103).

Trait VAa.f VAa.m VAx.f VAx.m VM VV VE VP.f VP.m Model fit1

X1 2907**** 3224**** 512 185 96 39 860 4413 4403 ns
Y1 1204**** 1091**** 52 282* 61 26* 735 2079 2196 ns
X2 978**** 1027**** 99 190 67 1 348 1492 1632 ns
Y2 428**** 655**** 138 15 46* 18** 408 1037 1142 ns
X3 1030**** 962**** 43 359** 52 19* 425 1568 1816 ns
Y3 514**** 690**** 156 91 29 30**** 433 1161 1273 ns
X4 4400**** 4574**** 0 968* 80 25 1697 6202 7344 ns
Y4 1040**** 1128**** 100 96 36 49**** 534 1760 1843 ns
X5 889**** 400**** 0 206 0 44 1040 1972 1690 ***
Y5 472**** 273**** 0 47 0 25 713 1210 1058 ****
X6 381*** 564**** 134 20 52* 32 468 1067 1136 ns
Y6 265*** 320**** 70 72 14 21**** 416 785 842 **
X7 2919**** 2557**** 238 163 149 0 941 4248 3811 ns
Y7 910**** 983**** 126 100 11 22** 440 1509 1555 ns
X8 2381**** 2516**** 327 279 80 0 1407 4194 4282 ns
Y8 259**** 242**** 13 47 7 13**** 250 542 559 ns
X9 1774**** 1698**** 43 0 44 16 710 2587 2468 ns
Y9 38 125**** 50** 4 5 2 144 240 280 *
X10 2066**** 1846**** 16 26 24 32* 735 2874 2664 ns
Y10 175**** 149**** 16 31 0 5** 131 327 316 ns
X11 307*** 407**** 68 69 24 32**** 549 980 1081 *
Y11 102 188**** 45 0 11 3 246 406 448 ****
X12 350** 526**** 159 122 42 39*** 818 1408 1547 ns
Y12 141** 182**** 46 50 8 19 348 563 608 **
Log(size) 236**** 351**** 0 37 23 32**** 220 511 663 ns

* P , 0.05; ** P , 0.01; *** P , 0.001; **** P , 0.0001.
1 Significance of the lack of fit of the causal model.

Centroid size data was significantly better fit by a model
that allowed sex-specific error variances, with the female
error variance estimated as a substantial 1.39 times that in
males. After log-transformation, the female and male error
variances were within 0.4% of each other, and fitting a model
with separate error variances no longer significantly increased
the fit of the model.

If X-linked effects are present, we expect that the female
parent-offspring covariance will be higher than that for males,
as fathers and sons do not share an X chromosome, while
mothers and daughters do. On average this effect is borne
out, as the female have on average a 19% higher parent-
offspring covariance than males. Similarly, paternal half-
brothers do not share an X, while paternal half-sisters do,
again leading to the expectation that the female half-sib var-
iance will exceed that of the male half-sib variance. This is
again borne out, with female components exceeding the male
component by an average of 13%. Conversely, the dam com-
ponents of females are smaller by 9%, as expected based on
the same reasoning. These findings all justify fitting separate
X-linked additive effects when obtaining the causal com-
ponents of variation.

As outlined above, phenotypic variances for most traits
were higher in the parental generation than in the offspring
generation. If this were due to general increase in all sources
of phenotypic variation, then the parent-offspring covariances
would be overestimated by a factor , where k is the factorÏk
by which parental variances exceed offspring variances. Al-
ternatively, the excess variation in the parents could be en-
tirely due to nongenetic causes, and no correction would be

appropriate. We fit the causal model with and without vari-
ance corrections. In most cases, the fit of the model was worse
with the variance correction, suggesting that the second ex-
planation may be closer to the truth. This was particularly
striking for log centroid size, which had the biggest depar-
tures of k from one. Correction of parent-offspring covariance
actually increased the residual sum of squares from 4.54 to
12.06. Consequently, no corrections for differences in vari-
ance were applied.

Causal Components

The causal components estimated are shown in Table 2.
In most cases the causal model fit well. Significant lack of
fit was usually associated with traits identified above as hav-
ing unequal error variances in the two sexes. The exception
is coordinate Y12, where the female parent-offspring co-
variance was the major contributor to the error variance.

In all cases, the male additive autosomal component was
highly significantly different from zero. Twenty-two of the
24 female additive autosomal components were also signif-
icantly different from zero. Contrary to the pattern of dif-
ferences in sex-specific terms discussed above, additive X-
linked terms were rarely significant. This likely indicates
insufficient power to detect terms of the magnitude found.
Vial variances were sometimes significant. The general lack
of significant VM terms means that there is no compelling
evidence for any maternal or dominance effects on these
traits.

We also calculated the overall additive genetic variance in
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TABLE 3. Causal components of variance as percentages of phe-
notypic variance. The h2 estimate is based on the sum of autosomal
and X-linked additive variation. The maternal, vial, and error var-
iances are expressed as a percentage of the total variance in females.

Trait

Female

h2

%
X-linked
variation

Male

h2

%
X-linked
variation Maternal Vial Error

X1 77 15 77 5 2 1 19
Y1 60 4 63 21 3 1 35
X2 72 9 75 16 4 0 23
Y2 55 24 59 2 4 2 39
X3 68 4 73 27 3 1 27
Y3 58 23 61 12 2 3 37
X4 71 0 75 17 1 0 27
Y4 65 9 66 8 2 3 30
X5 45 0 36 34 0 2 53
Y5 39 0 30 15 0 2 59
X6 48 26 51 3 5 3 44
Y6 43 21 47 18 2 3 53
X7 74 8 71 6 4 0 22
Y7 69 12 70 9 1 1 29
X8 65 12 65 10 2 0 34
Y8 50 5 52 16 1 2 46
X9 70 2 69 0 2 1 27
Y9 37 57 46 3 2 1 60
X10 72 1 70 1 1 1 26
Y10 58 8 57 17 0 2 40
X11 38 18 44 14 2 3 56
Y11 36 30 42 0 3 1 61
X12 36 31 42 19 3 3 58
Y12 33 25 38 22 1 3 62
Average 57 14 58 12 2 2 39
Log(size) 46 0 59 10 5 6 43

TABLE 4. Dimensionality of each matrix of causal components.
Bootstrap results based on analysis of 1023 resampled datasets.

Matrix

Coordinate data

Full
analysis No vial

Bootstrap

Median 5% 1%
Distance

data

VAa.f 16 17 15 14 13 16
VAa.m 20 20 18 16 16 20
VAx.f 13 13 11 8 7 12
VAx.m 12 12 11 9 7 13
VA.f 20 19 19 17 17 19
VA.m 21 21 20 18 17 20
VM 12 16 14 11 10 17
VV 16 — — — — —
VE 23 23 22 21 20 25

males (VA·m) and females (VA·f) as the sum of the autosomal
and X effects. Table 3 summarizes the relative importance
of the various components of variation using this sum as a
baseline. On average, the heritabilities of each trait are quite
high, and very similar in the sexes. The X-linked components
are somewhat less than expected given that the X chromo-
some makes up 20% of the D. melanogaster genome.

In addition to the analyses shown in Tables 2 and 3, we
also estimated all of the covariance components at each level
of the design and used these to estimate the causal variance-
covariance matrices. Of these, the G-(combined X and au-
tosomal) matrices for males and females, E- and P-matrices
are available as online supplementary Tables S4–S7 (avail-
able online only at http:dx.doi.org/10.1554/04-491.1.s1).

G-Matrix Rank

Our estimates of the rank of the causal component matrices
for both landmark coordinate data and a distance dataset are
shown in Table 4. Although we have coordinate data from
12 landmarks, and therefore 24 variates, four degrees of free-
dom are lost during the alignment process. Thus, the maxi-
mum expected rank for each landmark- or distance-based
matrix is 20. Results from the full coordinate analysis suggest
that there is significant additive genetic variation in all 20
possible dimensions of wing shape. For a few matrices, there
were more than 20 positive eigenvalues, which presumably
reflects numerical inaccuracies in the estimation procedures.

Table 4 also shows the median, 5%, and 1% quantiles for

rank over the bootstrap results. The lower confidence inter-
vals on matrix ranks suggest that we have high confidence
that the additive genetic variance fills out at least 17 of the
20 possible dimensions in phenotype space in female flies
and 18 dimensions in males.

The algorithm used to align the landmark configuration
potentially introduces its own pattern of covariance into the
data (Rohlf and Slice 1990; Walker 2000). This might affect
our estimates of rank. Therefore, we conducted an alternative
analysis based on the distances between aligned landmarks.
We calculated a total of 27 distances between nearby points
using the aligned landmark data. Each landmark was involved
in the calculation of at least three distances. The causal ma-
trices were then estimated for this dataset and the dimen-
sionality calculated from the eigenvalues as with the coor-
dinate data. The dimensionalities are very similar, although
cases where the dimensionality is both higher and lower exist.
When the genetic dimensionalities do differ, there is no more
than one rank difference between the estimates. Note that the
maximum rank is the same for both analyses, as they are
both based on the same data.

The distribution of log10 eigenvalues in the total additive
genetic variance matrix is shown in Figure 3. The agreement
between the bootstrap medians and the estimates from the
full analysis for coordinate data is very close up to approx-
imately eigenvector 15. For the last eigenvectors, the full
estimates exceed the bootstrap estimates by an increasing
amount. The distribution of eigenvalues from the distance-
based matrices is similar to that for coordinate-based anal-
yses, although variation is slightly more concentrated in the
earlier vectors.

Figure 3 shows that the logarithms of the eigenvalues de-
crease at a rate that is close to constant, suggesting an ex-
ponential distribution of variation across phenotype space.
Regression of logrithms of the first 20 eigenvalues on vector
number for the total G-matrix for the full coordinate analysis
including vial effects was highly significant in each sex, with
a slope of 20.171 6 0.012 in females (explaining 92% of
the variation) and 20.133 6 0.005 males (explaining 97.7%
of the variation). Figure 3 shows that the relationship is even
more precise for females over the first 19 eigenvalues, yield-
ing a slope of 20.151 6 0.004 in females (explaining 98.9%
of the variation). The corresponding slope for males is
20.130 6 0.005 (explaining 97.6% of the variation). These



1035WING-SHAPE DIMENSIONALITY

FIG. 3. Distribution of eigenvalues in the total additive genetic
covariance matrices for females (above) and males (below). Solid
circles are the eigenvalues from the full analysis, including vial
effects. The open squares show the median values from the boot-
strap estimates, while the upper and lower limits denote the 95th
and fifth percentiles of the bootstrap results. Solid triangles are
estimates from the distance-based analysis.

last slopes indicate that each successive eigenvalue decreases
by about 29% in females and 26% in males. The rate of
decrease in the distance analysis is slightly higher: 20.183
6 0.005 for the first 19 eigenvalues in females (explaining
99.0% of the variation) and 20.175 6 0.006 in males (ex-
plaining 98.2% of the variation). This is a decrease of about
34% per dimension. These are both remarkably shallow rates
of decrease compared to other eigenvalue distributions for
morphological data. For example, Kirkpatrick and Lofsvold
(1992) showed distributions of eigenvalues that decline by
three orders of magnitude over about four vectors, while ours
declined that much over approximately 20 vectors.

DISCUSSION

The main result of our analyses is that we were able to
detect additive genetic variation with high confidence in al-
most every dimension of form that we measured. We first
discuss some other aspects of our results before returning to
this fundamental result below.

A striking aspect of our results is that there is little co-
variance between the aligned landmark data and centroid size,
indicating little allometric variation in shape. The lack of

allometric shape variation in our study contrasts with strong
allometries found when the environment is manipulated to
create variance in size (Weber 1990). There is also strong
allometry for wing shape among species in the family Dro-
sophilidae (D. Houle and K. van der Linde, unpubl. data).
Because wing size is a reasonable proxy for body size (Reeve
and Robertson 1953; David et al. 1977), these results suggest
that allometry in these other settings is the consequence of
joint selection on size and shape, rather than of develop-
mental constraints.

Different landmarks in our study show very different levels
of phenotypic and genetic variation, with the most variable
point, landmark 1, showing about four times the variation in
the least variable, landmark 11 (see supplementary online
material). It is possible that these patterns are biologically
significant, but they are also to some extent a function of the
algorithm used to superimpose the point configurations in the
first step of our analyses. The algorithm we used would be-
have well if the variation in point locations were homoge-
neous and independent, an assumption that is clearly incorrect
for our data. The mean landmark configuration itself influ-
ences the weight assigned to variation at each point. Thus,
we have not necessarily recovered the variance-covariance
pattern that best reflects the biological processes that gave
rise to the variation (Rohlf and Slice 1990; Walker 2000).
The relative variation of points from this and all geometric
morphometric analyses must be interpreted cautiously.

Previous studies have indicated that X chromosome effects
explained about 20% of the genetic variation in morphology
in D. melanogaster (Cowley et al. 1986; Cowley and Atchley
1988), as expected from the proportion of genes found on
the X chromosome. The relative variation in males and fe-
males also was accurately predicted by an assumption of
perfect dosage compensation in males relative to females.
Our data showed several patterns consistent with the impor-
tance of X effects, such as larger covariance between female
parents and offspring than males, and between female half-
sibs than for males, and larger error variances in males rel-
ative to females. Given these results, we fit a causal model
with male and female additive X-linked effects assuming
complete dosage compensation. We rarely detected signifi-
cant X-linked additive variation (Table 2). This probably re-
flects insufficient power as the average size of the X effect
was a substantial 13% of the total additive variance (Table
3). This is somewhat lower than the proportion of genes on
the X chromosome. It is interesting to note that two QTL
studies of wing shape (Zimmerman et al. 2000; Mezey et al.
2005) found a noticeable paucity of QTL on the X chro-
mosome. This result could be explained by lower wing-shape
gene density on the X chromosome and therefore, indirectly,
lower power to detect QTL, since the combined effects of
genes with small effects producing a QTL signal may be
expected to be lower (Noor et al. 2001). However, the small-
er-than-expected amount of variation attributable to the X
chromosome in our study suggests that the small X-effect
may be a biological phenomenon.

Our results show a consistently high heritability of land-
mark displacements, between 33% and 77% for all traits. All
traits in both sexes showed significant additive genetic var-
iation in either the parent-offspring or the full analysis. Con-
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versely, the amount of variation that could indicate either
maternal effects or dominance effects (VM) was uniformly
very low. Estimates of VM only differed significantly from
zero in two of the 25 traits.

Dimensionality of Additive Genetic Variation

We demonstrated that the rank of the combined G-matrices
(including both autosomal and X-linked effects) was near the
maximum possible value. Our best estimates of rank are 20
of 20 dimensions in both sexes, with additional variation in
size that is largely independent of shape. Our bootstrap es-
timates of confidence limits to G-matrix rank are slightly
lower: 17 for females and 18 for males. Thus, we are quite
confident that additive genetic variation exists for almost all
aspects of wing shape that we assessed. The gradual expo-
nential decrease in eigenvalue with eigenvector number sug-
gests that we may have run out of power to detect higher
rank, rather than there being an absence of variation. These
results do not support the notion that standing genetic var-
iation constrains the ability of wing shape to evolve in this
population.

Our bootstrap estimates of rank may be somewhat con-
servative. The simulations that support the use of bootstrap-
ping are of the ideal case where the distribution of breeding
values is Gaussian. In a natural population breeding values
may well be non-Gaussian such that the sampling of partic-
ular families may have a larger impact on the rank than is
true in our simulations. Bootstrap samples will on average
only contain 1 2 (1/e) 5 0.63 of the blocks in the original
dataset, and therefore only 63% of the sire families. In a real
dataset, the missing families may be the ones that fill out the
variation in a particular dimension of phenotype space, re-
ducing overall rank. The lower bootstrap estimates of eigen-
values of rank . 15 may reflect such a bias.

Our high estimate of dimensionality is consistent with re-
sults of artificial selection experiments on wing shape. Weber
(1990, 1992) applied selection to seven different ratios of
distances between landmarks, almost all of which were also
used in the current study. The direction of selection was in
each case orthogonal to the strong allometric relationships
between the distances, that is, in a direction away from the
most variable aspect of shape. He found a localized response
in the selected region, with relatively small changes in other
traits of the wing. Houle et al. (2003) also obtained large
responses in a complex wing-shape index. The high rank of
G found here suggest that these results are not due to a
fortunate choice of traits, but would likely have obtained
some response along most dimensions in phenotype space.
These findings are particularly interesting given the very con-
servative nature of wing shape in the family Drosophilidae
(Hansen and Houle 2003; Houle et al. 2003;). The lack of
evidence for bidirectional absolute constraints instead im-
plicates selection as the primary determinant of wing shapes
across the family.

The potential for such fine-grained, high-dimensional
change is only expected when many genes with distinct ef-
fects control wing development. QTL studies have supported
this supposition, as many QTLs have been detected in recent
analyses of wing shape (Weber et al. 1999, 2001; Zimmerman

et al. 2000; Mezey et al. 2005). In each of the three popu-
lations studied more than 20 distinct QTL affecting aspects
of wing shape were detected. It is important, however, to
note that the large number of genes with wing-shape effects
do not directly imply a low level of absolute constraint. There
must not only be a large number of genes but the genes must
also alter wing shape in distinct ways. Directly estimating
the level of bidirectional absolute constraint is difficult with
QTL approaches because reasonable power to identify QTL
requires genes of large effect or a large combined effect of
many genes on a localized section of a chromosome. For the
purposes of estimating bidirectional constraints, the current
approach is far more powerful.

The high genetic dimensionality of wing shape contrasts
with the results of Kirkpatrick and Lofsvold (1992), who
could only demonstrate genetic variation in a few aspects of
developmental trajectories in mice, sheep, and chickens. Sev-
eral key differences between the studies might explain the
differences. First, each of the trajectories analyzed in the
Kirkpatrick and Lofsvold study consisted of the size of a
single trait at various times during growth. Such trajectories
may be less free to vary. For example, the animals studied
are probably not capable of becoming smaller during devel-
opment. Second, Kirkpatrick and Lofsvold analyzed data
from vertebrates, which may differ from Drosophila in the
level of constraint, for example due to differences in devel-
opment or to smaller population size. Finally, our analyses
of simulated data suggest that the methods used by Kirk-
patrick and Lofsvold (Kirkpatrick et al. 1990) can drastically
underestimate rank.

We have demonstrated that fly wings have a higher number
of heritable aspects of form than any previously studied set
of features. This result implies that genetic variation ex-
pressed in the multiple genetic pathways involved in the de-
velopment of the wing imaginal disc can cause distinct wing-
shape phenotypes. An open question is whether there are any
bidirectional constraints on wing shape. A more pragmatic
way to phrase this question is: How many aspects of wing
shape would we have to consider before we are able to find
convincing evidence of constraint? Studies that analyze even
more aspects of the wing, with accompanying increases in
the scale of the study to increase power, could answer this
question.

A related question is at what point does variation in a
dimension become so small that they are effectively an ab-
solute constraint? This question is difficult to answer because
it depends on the time scale over which directional selection
is applied to these least variable traits. If we expect these
dimensions to be under directional selection for short periods,
these may be effectively absolute constraints. Conversely,
long periods of consistent directional selection may change
the population mean even when the amount of additive ge-
netic variation is never very high. Another possibility is that
initially rare alleles might rise in frequency under such se-
lection regimes, increasing variation along the selected di-
rections. Selection on traits that are among the least variable
may reveal much about the importance of genetic constraints
on evolution.

An important limitation to a variation-based study of con-
straints is that variation can itself evolve. In a population
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where the mean phenotype is at equilibrium, genetic variation
can still change, decreasing due to drift and perhaps selection,
and increasing due to mutation and gene flow. If the phe-
notype is subject to directional selection, variation might rap-
idly be exhausted, especially in aspects of form with little
genetic variation. Ultimately, the capability of mutation to
replenish variation in the direction of selection will determine
whether the phenotype will be constrained. At an even longer
time scale, epistatic alleles could either decrease or increase
the variation available for evolution (Hansen and Houle
2003). If interacting alleles tend to mask genetic variation in
some directions, genetic canalization might evolve. Con-
versely, decanalization is also possible.

A second limitation is that our approach cannot deal with
qualitatively novel phenotypes, such as gain or loss of wing
veins. A very small proportion of the individuals in our study
showed such qualitatitve changes, and these were discarded
from our final sample. Our results therefore apply within the
phenotypic neighborhood of actual Drosophila wings and not
to the evolution of phenotypic dimension itself.

If, despite these caveats, we accept the fundamental result
of our study—that additive genetic variation exists for es-
sentially all phenotypic dimensions—no wing shape would
be beyond the reach of evolution. Thus, selection must have
been the primary architect of wing shapes observed across
the Drosophilidae, despite the fact that they vary little (Houle
et al. 2003). To the extent that phenotypes in other organisms
also show this pattern of variation, constraint-based expla-
nations of macroevolutionary patterns would need to be re-
evaluated. Additional studies of the dimensionality of genetic
variation are needed.
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