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luctuating asymmetries (FAs) are nondirectional
departures from perfect symmetry; FA is often
used as a measure of developmental instability (DI),
a hypothetical construct that we use to refer to the
idea, that in some.cases, variance in morphological
traits may be maladaptive. Asymmetry is a logical
way to approach this issue, because we can usually
assume that the optimum phenotype is the same on
either side of the body. This connection of FA and
DI is speculative, as it is not clear that DI is a real
property of an individual. In this chapter, we are
concerned with the issue of whether FA is heritable,
and what this might tell us about the inheritance of
" DI, assuming that DI does in fact exist. To study
this relationship, we assume a standard model of
the relationship between FA and DI (Van Valen

1962; Palmer and Strobeck 1986; Whitlock 1996{

Gangestad and Thornhill 1999; Houle 2000).

‘ We assume that FA and DI are affected by both.
environment and  genetics. Many studies have
demonstrated that FA is affected by environmental
conditions (Parsons 1990; Rettig et al. 1997; Lens
et al. 1999; Bjorksten et al. 2000a). However, the
question of whether or not FA is heritable has been
controversial (Houle 1997; Maller and Thornhill

. 1997; Pomiankowski 1997; Whitlock and Fowler

1997). One early meta-analysis suggested that the

amount of genetic variation in FA (and therefore
DI) was high (Meller and Thornhill 1997), but
later reviews found much lower levels of additive
genetic variation in FA (Whitlock and Fowler 1997;

Gangestad  and Thornhill 1999; Van Dongen
2000a; Van Dongen and Lens 2000). This problem
has become more complex with the realization that
FA is an imprecise measure of DI (Houle 1997,
2000; Van Dongen 1998; Whitlock 1996, 1998).
Inferring developmental instability from fluctu-
ating asymmetry is problematic due to the difficul-
ties of estimating a variance precisely. When we use
FA to infer DI, we are attempting to measure the

-variance of a trait. In other words, we want to
" know the potential range of values a trait can

assume for an individual. However, FA has usually
been used to measure this variance with only two
data points (e.g., left and right trait values).
Measuring a variance witlrtwo data points is highly
inaccurate and introduces a large amount of error
into the relationship between FA and DI

The question of whether differences in asymme-
try and developmental instability are heritable can
be of considerable importance when using indivi-
dual asymmetry to infer the quality of individuals.
For example, there has been a good deal of spec-
ulation that asymmetry is an important cue for
mate choice because it reflects good genes (Meller
1994; Swaddle and Cuthill 1994; Watson and
Thornhill 1994). In order for asymmetry to be a
reliable indicator of the quality of genes passed to
offspring, there must be genetic variation in FA in
the population. Similarly, the use of asymmetry as
an indicator of inbreeding depression again
demands that genetic differences account for differ-
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ences in asymmetry (Sheridan and Pomiankowski
1997), although, in this case, the quality of the

~ genes passed to outcrossed offspring might not be
predicted by parental asymmetry. In contrast; the -

use of asymmetry to diagnose the relative health

of populations does not depend on' a genetic basis

to differences in asymmetry. =
In this chapter, we consider the basics of infer-

ring genetic differences among individuals in asym-

metry and developmental instability in outbreeding
populations. First; we review some principles from

quantitative genetics to frame our discussion.

~ Second, we discuss the special challenges of quanti-
tative genetic studies of asymmetry and develop-
mental stability. We then discuss a simple model
of the relationship between asymmetry and devel-
opmental instability. The model parameters are
chosen based on our review of the literature on
the quantitative genetics of asymmetry. Based on
this model, we then investigate which statistical
approaches .to the inheritance of asymmetry are
likely to have the greatest power

Quantitative Genetics

The inheritance of asymmetry and developmental
instability is usually quantitative in nature; that is,
observed differences among individuals are quanti-
tative rather than qualitative. This puts asymmetry
in the company of the vast majority of phenotypic
traits' whose variation is not primarily determined
by a few genes of large effect. This offers some
challenges when investigating inheritance and evo-
lution, An excellent introduction to quantitative
genetics is available (Falconer and Mackay 1996),
and a comprehensive guide to quantitative genetic
theory and practice has recently appeared (Lynch
and Walsh 1998).

Genetic variation in quantitative traits depends
on alleles with effects too small to stand out against
a background of other kinds of variation. These
other sources of variation include variation in the
environment, nongenetic parental effects, or varia-
tion at other genetic loci. Detection of quantitative
genetic variation, therefore, depends on statistically
partitioning variation among individuals into that
due to genetic and nongenetic causes. Quantitative
genetic experiments, therefore, need to be designed
to allow estimation of effects likely to occur in that
species. For example, in a species with parental
care, separation of genetic and environmental
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" “effects requires separating some parents and off-

spring during development, for example by cross-
fostering. ‘Designs that fail to partition such effects
cannot necessarily be interpreted in genetic terms.
In this chapter, we confine our attention to the -
question of whether there is additive genetic var-
iance for. asymmetry and developmental instability -

" (i.e., whether offspring resemble their parents).

Leamy (chapter 10, this volume) takes up the
important. issue of the actual mechanism of gene

- action.

Because of the central importance to partitioning
phenotypic variance into its components, it is cru-
cial to keep in mind what can be concluded based
on a particular experimental design. Our review of
the literature on the inheritance of asymmetry (see
section “Literature Review” below) shows that
three experimental designs predominate: parent-
offspring regression, a nested half-sib design
where male parents are mated to several females,
and studies that examine sets of full sibs. Two
studies have used twin data in humans. Of these
designs, the parent—offspring and nested half-sib
design enable additive genetic variance to be esti-
mated, provided that critical assumptions are met -
(Falconer and Mackay 1996).

Parent-offspring regression studies include what
we want to know to predict evolutionary potential
(i.e., the degree to which offspring resemble their
parents). However, parents and offspring may
also resemble each other for a variety of nongenetic
reasons, such as a shared environment. For exam-
ple, in organisms with limited gene flow, parents
and offspring will probably have matured in similar
environments. Similarly, offspring can resemble
their parents due to maternal effects from provi-
sioning offspring during development. In species
with parental care, parents may transmit both

.material and genetic benefits to their offspring. A

simple check for maternal effects is to test whether
the relationship between mothers and offspring is

‘equal to that between fathers and offspring.

Observational studies are particularly susceptible
to confounding of environmental, parental and
additive genetic effects.

The nested half sib design generates three levels
of relationship between the offspring. Individuals
may be unrelated, half sibs, or full sibs, This allows
a more detailed partitioning of variation than in the
parent-offspring design. The ability to perform a
nested half-sib design implies a level of experimen-
tal control in the system that is not necessarily pre-
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sent in’ ﬁarent—offspring regressiori exéeriments,
and a good deal of the advantage of this design
 is attributable to this. For example, the half sibs

share some genes, but may not share a rearing

environment. In most cases,-a male is mated to
several females, so maternal effects show up at
the level of full-sib families, and do not affect the
resemblance of half sibs. In species where both
sexes care for offspring, half sibs .may share
some parental-care effects. The main disadvantage
of the nested half-sib design is that in some species
it is not possible to control or identify matings
necessary to create these different levels of related-
ness. When it is possible to do the necessary
crosses, this often requires displacing individuals
to an artificial environment that may introduce
artifactual results. S

A common type of study in the asymmetry lit-
erature contains comparisons between full sibs ver-
sus unrelated individuals. Full-sib designs are not
_ proper quantitative genetic designs. In addition to
confounding all of the environmental components
that affect families with all of the genetic effects,
full sibs resemble each other genetically in ways
that parents and offspring do not. Full sibs resem-
ble each other due to dominance variation, as well
as additive genetic variation. Thus, even if we
could assume that the problems of common rear-
ing and parental effects were negligible, this design
simply does not estimate the proper genetic para-
meter. This design is, presumably, so widely used
because it is frequently convenient to use in free-
ranging organisms with a2 minimum of manipula-
tion. A failure to find a significant family effect in
a full-sib design would be good evidence against
the importance of a genetic component to asym-
metry. Unfortunately full-sib designs cannot be
used to conclude any more than this about inheri-
tance.’

Inheritance of Fluctuating
Asymmetry and Developmental
Instability

Developmental instability is morphological. varia-
tion around an assumed optimum state.
Fluctuating asymmetry is used as a measure of DI
because we often assume that perfect symmetry is
optimal. Many different measures of fluctuating
asymmetry have been proposed and used in the lit-

erature (reviewed in Palmer and Strobeck 1986;
Palmer 1994). The most commonly used measure
in genetic studies is the unsigned difference between
realizations of the same structure across an axis of
symmetry, such as the left versus right sides of the
body. Fluctuating asymmetry of the ith individual is'
then :

FA; = |Li - Ry )

where L; and R; are the sizes of the relevant part
on the left and right sides of the body of individual
i. Given that what we seek to measure with FA is
the variance in development of a structure, it
would be preferable to use the estimated variance
between sides. However, genetic studies have not
made use of variances, so we will not consider this
statistic.

What we seek to measure with FA is the variance
of the structures measured in-a situation where the
expected value is the same and, thus, the expected
difference is zero. Normally, we cannot replicate
individuals and repeatedly rear them in the same
environment. The two sides of a basically symme-
trical individual do represent such a situation, as the
genotype of the two sides is the same (barring
somatic mutation), and the whole-organism envir-
onment is also the same. In the ideal case, there
would be more than two replicates to this natural
experiment (Leung et al. 2000). Plants, for example,
usually have many leaves, and may have many
petals within the same flower. Unfortunately, data
on asymmetry of multiply replicated parts has only
been used in a single genetic analysis (Wilsey and
Saloniemi 1999). ‘

The fact that the within-ifidividual sample size is

two in all but one genetic study is an important
~ limitation. Few of us would ever design an experi-

ment where the sample size is two, even if we were

' only estimating the mean of a trait. Variances are

much harder to estimate accurately than means, so
the limited sample size is even more critical with FA.
The result is that any particular FA value will be
a very unreliable indicator of the development
variance or DI for an individual (Whitlock 1996;
Houle 1997). This suggests that unusually large
experiments will be necessary to detect significant
genetic variation in FA and DL

This challenging situation is represented schema-
tically in figure 11.1, where we show data from four
simulated populations with different levels of varia-
tion in DL Each pair of panels represents a popula-



, % 10
9 i <
g 4..-01 00113 S
,g { ‘l : ‘/—DI 0442 ‘
_ R\ e DI=133 . Repeatability = 0.48994
L < - 3 T T 1
N 1 I 1 1 .
Al 6 8 10 12 14 0 3 101520
Trait Value ' , DI
’ 5 Repeatability = 0.2187
7, 4—DI=0079 4 .
oy ’ L
2 P 3
g K
g 2
= 1
0
B1. ©
g
3
g
6
ClL
DI = 0375 57 o
A D = 0442 4 Repeatability = 0.00399
5 =0.552 :
§' s
5%
T T T 1 N 1
6 8 10 12 14 .0 1 2 3
D1. Trait Value D2. DI

Figure 11.1 The relationship between trait value, developmental instability (DI), and fluctuating
asymmetry (FA). The four sets of graphs depict populations with (A) very high, (B) high, (C) medium,
and (D) low variation in developmental instability. The left-hand panel (A1, B1, C1, D1) shows the
frequency of expected trait values for individuals exhibiting the mean level of DI (solid line), individuals at
the Sth percentile of DI values (small dashed line), and individuals at the 95th percentile of DI values (long
dashed line). An individual with a low value for DI has a high probability for expressing trait values close
to the mean. Conversely, an individual with a high value for DI is more likely to express trait values that
deviate from the mean. The right-hand panel (A2, B2, C2, D2) shows the relationship between FA and DL
Each graph shows 500 independent individuals generated using our model with 500 sires, 1 dam/sire, and 1
offspring/clutch (i.e., there are no related individuals). Repeatability describes the degree to which
differences in FA reflect differences in developmental instability among individuals. Note on A2 that the
scale for both the x- and y-axes differs from B2, C2, and D2. The relationship between DI and FA (i.e., the
slope) is approximately equal across the four graphs. Due to the high reahzatlon error in FA, a large
amount of variation in DI is requu-ed for high repeatability.
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tion. The ‘three curves in each of the left-hand
graphs represent the mean, 5th, and 95th percentile
values for DI for a population with a given level of
variation in DL Each individual has a unique value
for DI that corresponds to a unique curve of

expected trait values most likely occurring between-

the Sth and 95th percentiles. The range of different

curve shapes represents the variation in DI among ‘

individuals in a population. The right-hand panels
show the relationship between DI and many reali-
zations of FA. A realization entails two expressions
of the trait, corresponding to right and left trait
values. The probability of a trait assuming any
one value is determined by DI, the variance in
potential trait values. An individual with a low
value for DI has a small variance of expected trait
values, and therefore, a low average value of FA.
An individual with a large value for DI has larger
variance of expected trait values and a large average
. value for FA. Note that, while there is some rela-
~ tionship between DI and FA, individuals with all
levels of DI are still fairly likely to be nearly symme-
trical. Thus, the “realization” of DI as FA in an
individual is highly variable.

The realization variance in FA adds substantially

to the nongenetic sources of variance when we par-"

tition FA variance during a quantitative genetic
experiment. This means that heritability estimates
of FA drastically underestimate the heritability of
DI (Whitlock 1996, 1998; Houle' 1997; Van
Dongen 1998). One way to see this is to examine
the relationship between FA and DI in the simulated
data in Figure 11.1. A regression of FA on DI shows
that DI explains rather little of the true variance in
FA, with repeatability values or R? of less than 49%
for even the best-case scenario in figure 11.1.

The repeatability of FA, which Van Dongen
(1998) refers to as the hypothetical repeatability,
is the expected proportion of variation due to real
differences in DI among individuals. It excludes
both measurement error and the variance intro-
duced by differences in development. It thus dif-
fers from the usual measures of repeatability that
‘only take measurement error ‘into account
(Swaddle et al. 1994; Van Dongen 2000b). The
repeatability associated with measurement . error
reflects differences in FA when the same indivi-
dual is measured more than once. The repeatabil-
ity associated with DI deals with the degree to
which differences in FA reflect differences in DI,

as depicted in figure 11.2. For the remainder of -

this chapter, we will use the latter definition when
referring to- repeatability.

As stated above, the repeatability cannot be esti-
mated from real data, because DI cannot be directly
measured. Whitlock (1996) suggested a potential
solution to this problem. He pointed out that the
mean. and variance of FA are closely related and
that variation in DI increases the variance in FA
faster than it increases the mean of FA. If one can
assume the shape of the distribution of the traits
that are used to calculate FA, then one can calculate
the expected coefficient of variation of FA (CVEa)
under the assumption that DI does not vary. Any
CVza higher than this minimal value then has to

reflect real differences in DI among individuals.
The repeatability, or proportion of variance in FA

that is due to real differences in developmentaf var-
iance among individuals, can be calculated on this
basis, and the realization error of FA partitioned
out, allowing a less biased estimate of the heritabil-
ity of DI.

Accurate formulas for calculating repeatability
of FA under the assumption that the trait values
are normally distributed have been derived by
Van Dongen (1998) and Whitlock (1998). Van
Dongen (1998) showed that the repeatability is '

%= [Via — Vi-r(r = 2)/m)/ Vpal @

where Vg is the total varidnce in FA among indi-
viduals, and Vg is the variance in the difference
between left and right sides, or signed FA.
Alternatively, Whitlock (1998) showed that the
approximate repeatability of FA can be calculated

as . . - pe

2 (w—-2)
“n nCV%, )
In our simulations, these two formulas for the
repeatability give nearly identical results (see section
“Modeling Fluctuating Asymmetry and Develop-
mental Instability”). In either case, the heritability
(b*) of DI may be estimated by dividing the herit-
ability of FA by the repeatability

by = ha/R @

'An alternative method of estimating repeatability

from kurtosis, rather than the lower moments, has



162 Genetic Causes |
‘Genetic and - (‘aeé:etic am‘ii énvirc;amzx:tal gffecats arg "
L V1 additive and normally distributed within the
; Environmental Effects Somulation
o . L
]
3]
7213
ol
=15
w3 _ P v
. — Log-Developmental Instability for an
[.og (Developmental Instability (DI)) individual is determined by gonefic and
environmental effects. Within the population
- log(D}) is normally distributed. True
; heritability occurs at this level.
Exponentiation - :
DI = exp(log(DD)
' t]l)11 is Iogl-normally distriguteg mlthl}? .
1 e population among individuals. Fora
Developmental Instability (DI)| the popu ation amon individus
) ) distribution and represents the probability
of expressing a given trait value.
Trait Trait
] Realization Realization
Bl ~(leR) (right)
)
s R \ '
) 5 : : Traits are normally distributed when
g Traits variation in DI is low and are leptokurtic
L when variation in DI is high.
=
§ Absolute Difference
= ~ Between Left and
Right -~
Traits FA is half-normally distributed in the
< population. The repeatability (%)
Eluctuating Asymmetry (FA) ] represents the degree to which
: . individuals with different levels of DI

differ in FA.

Figure 11.2 Schematic diagram for the expression of DI and FA. Genetics and environment are additive
and affect DI on the log scale. The expression of left and right traits are two independent realizations of
developmental instability. Fluctuating asymmetry is the absolute difference between these'two traits.

also been proposed (Gangestad and Thornhill
1999, and chapter 5, this volume).

Literature Review

We reviewed the literature for studies reporting her-
itability estimates of FA (b%4). The heritability of
FA has been the subject of a number of recent
reviews (Moller and Thornhill 1997; Whitlock
and Fowler 1997; Gangestad and Thornhill 1999;
Van Dongen 2000a,b; Van Dongen and Lens
2000). Each of these reviews used different criteria
for inclusion of studies that we did not think

entirely appropriate. For example, both Whitlock
and Fowler (1997) and Gangestad and Thornhill
(1999) misreported the heritability of FA for bristle
number in female Drosophila melanogaster as 0.05.
It should be 0.005 (Reeve 1960). Gangestad and
Thornhill (1999) correctly report three heritability
estimates from Scheiner et al. (1991) (0.039, 0.027,
0.005), but exclude a negative heritability estimate
(—0.026). While this estimate was excluded from
their table, it apparently was used in their calcula-
tion for -mean FA heritability (Gangestad, pers.
comm.). Gangestad and Thornhill (1999) also
included an unusually high heritability estimate
(0.630) calculated for the FA of lateral plates in
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 sticklebacks (Hagen 1973). This study calculates
the heritability from animals pooled across two dif-
ferent rearing conditions (21°C and 16°C) and six
different populations. Furthermore, their analysis
results in pseudoreplication of parental observa-
tions. Van Dongen (2000a) uses a Bayesian analysis
to estimate the mean and standard deviation of the

 heritability of FA. However, he modeled a beta dis-’

tribution that constrairs the estimate to lie between

0 and 1. This may result in an estimate biased away -

from zero. This practice results in an overestimation
of additive genetic variation (Lynch and Walsh
1998). Finally, Van Dongen and Lens (2000)
excluded studies with measurement error larger
than real asymmetry despite the fact that repeatabil-
ity-corrected estimates of b}, are expected to be
unbiased, Furthermore, they included some studies
where measurement error was not calculated.
Here, we report heritability estimates of FA. We
concentrated on finding recently published studies
“and relied on previous reviews for references to
older literature (Gangestad and Thornhill 1999;
Van Dongen and Lens 2000). In addition, we
~ performed a literature search using Cambridge
Scientific Abstracts employing the search words
fluctuating asymmetry, heritability, and genetic var-
iation. We included studies that used half-sib, full-
sib, parent—offspring, and twin methods to measure
the heritability of FA. We do not report the results
for studies examining variation among clones. We
only report data from studies examining differences
between right and left traits as opposed to the total
number of asymmetrical traits (see Leary et al.
1985). Estimates that showed significant directional
symmetry or antisymmetry were excluded. Studies
that did not test for such a phenomenon were

included. Finally, we only included studies that.

reported the heritability estimates of FA for all mea-
sured traits. Studies that reported only heritability

estimates that differed significantly from zero were

excluded (see Parker and Leamy 1991; Cadeé
2000). ‘

For every study in our sample, we recorded each
estimate of the heritability of FA, the method used
to calculate heritability, the overall sample size of
the experiment, and, if available, the coefficient of
variation of FA (CVg,), CV of trait values, and %
(hypothetical repeatability) when available. For
many studies, we calculated R from the CVga (or
mean and standard deviation of FA) reported in the
essay. For one study (No. 18), the ® reported did
not agree with the 3% we calculated based on the

means and standard deviations of FA. For this
study, we used the ® provided by the authors.
Flectronic Appendix 1 (see p. xxiii for details)
gives the raw values for each estimate in each

‘study. Most recent reviews have taken the form of

meta-analyses (Meoller .and Thornhill 1997;
Whitlock and Fowler 1997; Gangestad and
Thornhill 1999; Van Dongen and Lens 2000).
Our goal here is primarily to provide an exhaustive
list of heritability estimates for FA in order to ascer-
tain the strength of evidence for inheritance in par-

ticular cases. We also compare the proportion of

estimates that differ from O with the expected
Type 1 error rate. ' -
We found a total of 183 estimates of heritability
for FA, in 20 published studies. Four studies used
nested half-sib breeding designs (yielding 24 esti-
mates), seven studies used full-sib breeding designs
(55 estimates), ten used parent-offspring regression
(91 estimates), and two studies used analyses of
monozygotic ‘and dizygotic twins (13 estimates).

“Two studies used estimated values based on both

full-sib and = parent-offspring regression = (see
Electronic Appendix 1). The mean number of off-
spring used in breeding designs was 740.3, but the:
median number of offspring was 233.9. Two studies
(No. 6, No. 7) with large sample sizes created this
disparity between mean and median in sample size.

The average hypothetical repeatability was
0.294. Gangestad and Thornhill (chapter 5, this
volume) show that $ is sensitive to the scale of
measurement relative to the degree of asymmetry.
They adjusted many R-values for this phenomenon
and found R typically between 0.08 and 0.10. This
phenomenon has probably led us to overestimate
the hypothetical repeatability somewhat. ‘

Few studies found a significant amount of
genetic variation for FA (see Electronic Appendix
1 for individual tests). Of the S5 estimates based
on full-sib breeding designs, only four differed sig-
nificantly from zero. Three of these estimates were
problematic because FA was corrected for size (i.e.,
measured as the absolute difference between left
and right trait values divided by the mean trait
value). The practice of dividing FA by trait size

‘potentially confounds genetic variation in trait size

and asymmetry. Residuals from a regression of FA
on trait size provide a much better estimate of size-
corrected FA. Of the 13 estimates based on twin
studies, four heritability estimates differed from
zero. However, all four of these estimates came
from one study (No. 10) that may have inflated
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_ the heritability estimate by a factor of 2 (see
Pechenkina et al. 2000 for details). Of the 90 esti-
. mates based on parent—offspring studies, only six
were: significantly different from zero. However,
five of these significant estimates came from two
studies of primates (macaques and humans) where
mother FA was regressed on daughter FA. These

‘studies could not eliminate environmental effects"

due to maternal effects’ and extended parental
care, Finally, of the 21 estimates based on nested
half-sib”designs, only one estimate differed signifi-
cantly from zero. This study was a Herculean effort
that employed a massive sample size (table 11.1).

' Unweighted mean 2%, values arrived at by
the different methods. are 0.062 (half-sib), 0.043
(parent—offspring), - 0.032  (full-sib), and 0.147
(twin).  These are nearly significantly different in
a one-way  analysis of ‘variance. (ANOVA)
~ (P =0.067) on the unaveraged values, due primar-
ily to the large discrepancy between the twin esti-
mates and the others. .

For each study, we calculated the unweighted
mean for each of these parameters and median
values for the heritability of DI and FA. from these
raw estimates. These values are shown in table
11.1. Overall, the average values in table 11.1 are
not quite significantly different from 0 by an
unweighted - t-test (mean 0.026 #* 0.015 .SE,
P =0.092). However, these numbers are biased
upwards because many studies reported negative
heritabilities as 0. Study No. 20 (Arnqvist and
Thornhill 1998) found that 16 out of 32 b3, esti-
mates were negative and rounded them to zero.
Similarly, study  No. 11 (Corruccini and Potter
1981) rounded three out of four b%, estimates to
zero. ‘Study No. 10 (Pechenkina et al. 2000)
rounded three of 18 b2, estimates to zero.

We estimated the heritability of DI (b3;) for the
above studies by dividing b}, by the hypothetical
repeatability, % - (see section “Inheritance of
Fluctuating Asymmetry and Developmental
Instablhty”) In cases where b, was negative, we
set bh; =0, so average bb; will be highly biased.
The relationship between the coefficient of variation
of FA, which is used to calculate ®, and b, is shown
in figure 11.3. Estimates of b}, were highly variable
and often did not make sense biologically (i.e., nega-

tive or greater than 1). Two studies had average b3, -

above 1.0 (No. 18, No. 14). In study No. 18
(Blorksten et al. 2000b), only one of 18 estimates
of b}, was a value between 0 and 1. Two heritability
estimates were negative, eight were zero, and seven
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were above 1.0 (see Electronic Appendix 1; see
p. xxiii for details). In study No. 14 (Leamy 1999),

four of ten estimates were above 1.0. In one study

(No. 15, Evans and Marshall 1996), the average b DI
was negative despite the fact that all negative hFA
values were set to zero when calculating b,
Although the average % for study No. 14 is positive
in table 1.11, many R-values for individual traits

. 'were less than zero, and this had a large effect on

b%; (see Electronic Appendix 1).

The bizarre nature of these heritability estimates
suggests that something is amiss about the use of %
to correct for the relationship between variation in
FA and variation in DI. One possible reason for this
is that heritability corrected by R has too high a

~variance to be useful. In contrast to Gangestad

and Thornhill (chapter 5, this volume), who con-
centrated on the problems associated when % is
large, these bizarre results occur when % is too
low. This interpretation is supported by the fact
that the extreme values of b%; we have noted arise
when the coefficient of variation in FA is low, caus-
ing ! to be a small positive or negative value, as
shown in figure 11.3. We next explore this possi-
bility using a simulation model. Another possible
reason for this poor performance is that the model
used to determine the relationship between FA and
DI is not correct. For example, the model assumes
that the distribution of the parts is normal, which
may not be correct (see Klmgenberg, chapter 2, this
volume).

Modeling Fluctuating Asymmetry
and Developmental lnstab_ilityr\

We deyeloped a model to simulate the expression
and inheritance of fluctuating asymmetry and devel-
opmental instability (figure 11.2). We envision
developmental instability (DI) as a variance around
a trait mean (figure 11.1; Houle 2000). DI is equiva-
lent to Vp in Houle (2000). A large value for DI
means that there is a wide possibility of trait values
that an individual can assume. A small value for DI
means that development is more canalized, and an
individual is more likely to develop trait values
closer to its expected mean. In these simulations,
all individuals have the same expected mean trait
value.

Variances must be positive, and it is important
to take this into account when modeling or simulat-
ing developmental. instabilities. In this study, we
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" Figure 11.3 The relationship between the coefficient of variation of FA (CV of FA) and estimates of DI
heritability. (A) Each data point represents the average of one study. (B) All estimates pooled.

assume that DI is log-normally distributed, in con-
trast to Houle (2000), who assumed the gamma
distribution. The log-normal distribution accom-
modates the use of additive genetic and environ-
mental variances while allowing for a lower
bound for FA values (i.e., zero). Throughout this
chapter, log refers to the natural log.

- The log-normal distribution describes a variable
whose log-transformed values are normally ‘distrib-
uted. The log-normal is commonly applied to data

where- factors influencing a -distribution are

assumed to act multiplicatively, that is they increase
or decrease the value of a variable by a certain
proportion, rather than by a given amount. By log
transforming, one then puts the variable on a scale
where multiplicative effects are additive. On this
‘new scale, the central limit theorem holds, suggest-
ing that the log-transformed variables will be nor-

mally distributed. Since proportional changes do
not change the sign of the variable, if is appropriate
for variables such as sizes or variances where values
less than 0 are not possible. Figure 11.2 shows the
relationship between the log-scale and measurement
scale. +

In our simulations, we have held the mean devel-
opmental instability (DI) constant, while allowing
the variation in DI to vary. When the mean is held
constant, a convenient way to express the relative
variability is with the coefficient of variation. The
four distributions of DI values used in our simula-
tions are shown in figure 11.4. The most important
thing to realize about this figure is that each distri-
bution has the same mean DI value. When the var-
iance is small relative to the mean, as represented
here by the curve labeled CVp; = 0.1, log-normal
distributions are nearly symmetrical, and closely
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- Probability

1.0

‘ :Figure 1v1 .4 Distribution of devélopmental instability (DI) for different levels of populatidn variation in DL
The four curves (CVp; = 3.0, 1.0, 0.5, and 0.1) represent very high, high, medium, and low variation in DI
res_pe_qtively. Note that the mean DI is kept constant for all four curves. :

approximate normal distributions. However, as the
variance in DI becomes larger, the fact that obser-
vations cannot be less than 0 forces the distribution
to become more asymmetrical. In each curve shown
in figure 11.4, the mass of observations constrained
to lie between the mean and 0 must be larger than
those to the right of the mean, whose values may
become larger and larger. Extremely large values of
DI are rare, but they have a large influence on the
mean when they occur. :

To simulate fluctuating asymmetry and the
underlying developmental variances, we assume
that individual values of log-transformed develop-
mental instabilities (In(DI)) are determined as

@D =p+ES ®

* where p is the mean DI on the log scale, S is the
scaling constant that determines the standard devia-
tion of DI, and E; is a normally distributed random
variable with mean 0 and variance 1. The mean of

the developmental variance on the measurement

scale will depend on the distribution- of In(DI),
and not just the mean (Crow and Shimizu 1988;
Lynch and Walsh 1998, pp. 294-5). Thgr\efore, to
generate data with an expected value DI on the
measurement scale we set

u=InDi— 822 6

This equation corrects the mean on the measure-
ment scale for the effects of variance on a log
scale. Similarly, the variance on the log scale, 52,
is related to variation on the measurement scale as

§* =In(1 + CVpy) NG

where ET’DI is the expected coefficient of variation
of developmental instability, expressed as a pro-
portion. The expected level of DI is the product
of the trait mean and coefficient of variation,
DI=,(wCV,m-‘)2, where CVi,;; is the coefficient
of variation in trait values and w is the mean of
the. trait values on the measurement scale (figure
11.2). Both CVj,; and o are constant in all our
simulations. - ~ .

E; is determined by three different kinds of
effects, additive genetic effects of dam, sire, and
segregation within families (a), maternal effects of
family () (which may be interpreted as any com-
bination of nonadditive genetic effects, maternal
effects, or common environment effects), and indi-
vidual deviations due to environment or measure-
ment error (). Then the deviation of individual i as
the offspring of the jth sire and the kth dam is

: __'_a,-+a;,

a;
E,-— 3 +:7._12-+mk+e,- ®
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Each of the 4, m, and e are independent normally
- distributed random variables with O mean. The var-

iances of the variables @, m, and ¢ are chosen such -

that their total variance is 1. The as have variance

equal to the heritability. of log developmental var-.

iance, with the variance of m and e making up the
balance of the variance. The 4; term represents the

effect of genetic segregation on individuals within -

. families (Quinton et al. 1992; Lynch and Walsh
1998, p. 758).

We assume that the two sides of an mdmdual
are drawn from a normal distribution with variance
that equals DI, and that the mean does not differ
among individuals. FA is the absolute value of the
difference between two such trait values:(i.e., left
and right sides). For the purpose of these simula-
tions we set  to an arbitrary value of 10. We set
CViai as 0.0665, a value that is close to the mean
value found in our literature review. :

We used our model to generate a series of half-

sib families to address the following question:
How well do estimates of the heritability of DI
(b3 = b}4/R) approximate the true heritability of

. DI? We know these values, of course, because we
have simulated them, a situation that does not arise
in experimental studies. .

To do this, we estimated hb; for our simu-
lated nested half-sib design. For each simulation
we generated 100 sires, each mated to five dams
with 100 offspring per clutch, resulting in a total
of 50,000 offspring (see Appendix 1 for SAS
code). We simulated four levels of variation in
DI, labeled low variation (CVp; = 0.1), medium
variation {CVp; = 0.5), high variation
(CVpy=1.0), and  very high variation
(CVp; = 3.0). The % produced in the high varia-
tion treatment (0.2187) approximates the average
# found in the literature review. The very high
and low variation treatments produce R-values
that are approximately one standard deviation

- higher and lower than the mean (0.49, 0.004).
The medium variation treatment represents an
intermediate value of M (0.0869). In addition,
we also independently varied the heritability of
DI on the log scale (hereafter referred to as the
true heritability) from 0 to 0.8 by increments of
0.2 plus a value of 0.1. For each combination of
DI variation and true heritability, we conducted
15 simulations each producing 50,000 offspring.
From each simulation, we. calculated heritabilities
from the variance components (Lynch and Walsh
1998, p. 573) of the simulated data for log(DI),

DI (b},

Genetic-Causes

DI on the measurement scale, and FA. In addi-
tion, we calculated the estimated bh.

In this chapter, there are five separate heritabil-
ities (four response variables, one model para-
meter). The heritability of log(DI) and of DI on
the measurement scale are response variables and
are calculated based on simulated data. These vari-
ables cannot be measured using actual organisms.

"The heritability of FA (b}4) is also a response vari-

able and is similarly calculated using variance com-

ponents We calculated the estimated hentablhty of

= b}, /R). These latter two values (bh; and”
b%,) are estimable in real organisms. In contrast to

these four estimates, the true heritability on the log

scale is a model parameter (i.e., an independent

variable).

Finally, we also calculated the hypothetical
repeatability (%) using both Whitlock’s and *Van
Dongen’s method (Whitlock 1998; Van Dongen
1998). The two methods produced nearly equal,
but not identical results. In this chapter, we present
results based on Whitlock’s method: All simulations
and statistical analyses were performed with SAS
V8 (SAS Institute 1999-2000).

Model Performance

To test the validity of the trait expression compo-
nent of our model, we examined DI and FA across
treatments, and compared trait variation and aver-
age DI As expected, average developmental
instability did not change with DI variation nor
with the true heritability (Kruskal-Wallis tests; P >
0.150 in all tests). Average FA did differ with DI
variation and true heritability (DF variation by true
heritability interaction: Kruskal-Wallis test =
337.24, P = 0.001). Average FA in the medium,
high, and very high DI variation treatments were
97% , 90%, and 75% of that in the low DI varia-
tion treatment. Presumably the cause of this discre-
pancy is the large departure of the distribution of DI
from normal when the variation in log(DI) is large
relative to its mean. The extreme skew of the dis-
tribution for the highest level of DI variation is evi- -
dent in figure 11.4 (CVp; = 3). With such a skewed
distribution, individuals with extremely large DI
values occur occasionally, and have an extremely
large effect when they do.

For a subsample of simulations, we examined
the relationship between average DI, trait variation,
and the coefficient of variation of trait values. As
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expected, average DI equaled trait variation (0. 44)
In addition, the measured coefficient of variation of

" trait value matched the model parameter (0.0665).
- To test the validity of the breeding equation, we
compared the heritability of DI with the true herita-
bility (model parameter). The heritability of log (DI)

did not differ from the true heritability (figure

11.5B, Wilcoxon signed ranks test, z=10.3102,
P = 0.7564). The heritability of DI on the measure-
“ment scale slightly underestimates the true herita-
~ bility at the higher levels of overall variation
in DI (Wilcoxon signed ranks test, z = -9.940,
P = 0.0001). :

Our treatments had large effects on- the heri-
tability of FA and DI (figure 11.5A-B). Both DI

variation and the true heritability affected FA b*

(figure 11.5A, overall DI variation: Kruskal-
Wallis test = 153.92, P = 0.0001; True heritability:
Kruskal-Wallis test.= 129.44, P = 0.0001). In con-
trast, only' the true heritability had a significant
effect on the heritability of log (DI) (figure 11.5B,
true heritability: Kruskal-Wallis test = 324.29, P =
0.0001; overall DI variation: Kruskal-Wallis test =
0.271, P = 0.9655). Together, these results support
the validity of our model.

Measuring Heritability of
Developmental Instability

With our simulated data we can determine how
well the estimate of the heritability of DI from FA
data (b} = b},/R) approximates the true heri-
tability. Under some circumstances, the estimate
performs reasonably well (figure 11.6A-B, figure
11.7B). The estimated b}, closely approximates
the true heritability under medium to very high
levels of variation in DI The estimate b} is very
inaccurate when there is low variation in DI and
when there is no real genetic variation in DI (figure
11.6B, figure 11.7B). When overall variation in DI
was low, the median absolute difference between
b3, and true h* was 0.345, and the mean was
1.374. When there was no- genetic variation, the
median absolute difference was 0.072, and the
mean was 0.275.

How can a researcher working with real organ-
isms know when his/her estimate of the heritability
of DI is unreliable, given that DI is not directly
measurable? We investigated this by graphing the
relationship between CVg4 and the difference in
true and estimated heritabilites for all of our simu-
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lated data in figure 11.7B. Examination of the figure
shows that scientists should be highly skeptical of
DI heritability estimates when the hypothetical
repeatability of FA is low. Repeatability is negative
when the coefficient of variation in FA is lower than
0.75 (figure 11.7A). As CV of FA increases above
0.75, the difference between the estimate and true

DI »* decreases and the estimate becomes more

reliable (figure 11.7B).

"The . above results were obtained from the
simulation of 50,000 offspring per replicate. Is the
problem worse with a more realistic number of off-
spring? To address this question, we simulated a
smaller nested half-sib breeding design with ten
sires, five dams/sire, and ten offspring/clutch (500
offspring total). Again, we ran 15 simulations for
each combination of DI variation and true heritabil-
ity, and b}, estimated ‘and b3 = b34/R. The
absolute difference between true and estimated her-
itabilities frequently approached 1 for all levels of

. CVza: In general, we found the same qualitative

pattern (figure 11.7C) as in the unrealistically
large samples. Estimation of the heritability of DI
from the heritability of FA is reasonably accurate
only when the coefficient of variation of FA is high.

Building a Better Mousetrap for
Asymmetrical Mice

Fluctuating asymmetry is an- imprecise measure of
developmental instability because it tries to measure
a variance with two data points. This may have
important implications for the design and analysis
of breeding experiments, but the question of the
power and optimal design-of such experiments -
has not previously been addressed. In the majority

“of the breeding studies, there were no significant

effects of the terms that would indicate the presence

. of genetic variation. Thus the heritability of FA did

not differ significantly from zero in the majority of
cases. This can be explained by an absence of
genetic effects on FA and/or by a lack of power of '
these studies. In this section of the chapter, we take
up questions of power and optimal design for data
sets with realistic sample sizes.

As outlined earlier, the most informative designs
for the estimation of b%4 in wide use are the nested

- half-sib experiment and parent-offspring regres-

sion. The full-sib and twin designs that have been
used in many studies never allow the estimation of
the additive genetic variance without the confound-
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ing influence of other likely sources of covariance
among relatives. Consequently these designs are not
considered. '

General Approach

Simulated DI and FA data were generated using the
above mode! assuming that the proportion of var-
iation due to additive genetic variance was 0.1, 0.4,
or 0.8. Unless otherwise noted, the maternal family
effect was assumed to be absent. We compared
breeding designs by manipulating the numbers of
sires, dams, and clutches. For the nested half-sib
design, we simulated every possible combination
of sires, dams, and clutch size that resulted in a
total sample size of 500 and had a minimum of
two individuals in a category (e.g., 2 sires, S
dams/sire, 50 offspring/clutch; 5 sires, 2 dams/sire,
50 offspring/clutch, etc.), for a total of 24 different
breeding combinations. In nested half-sib designs,
we tested the effect of sire using the mean square
of dams nested within sires as the etror term unless
otherwise noted. For parent—offspring regression,
unrelated full-sib families were simulated for every

73

combination of sires and clutch size that resulted in
a total sample size of 500 (e.g., 250 sires, 1 dam/
sire, 2 offspring/clutch; 125 sires, 1 dam/sire, 4 off-
spring/clutch, etc.). For each breeding combination,
we performed 100 replicate simulations. We first
generated parents, then generated their offspring
based on the parental breeding values. The effects
of maternal environment (when present) and indi-
vidual variances were assumed to be independent of
the parental values.

Overall Power and Breedihg Design

The average probability values generated by the
three methods {nested half-sib ANOVA averaged
over all 24 combinations of sire and dam numbers,
midparent-offspring regression, and one parent-
offspring regressions) are shown in figure 11.8.
Clearly, breeding designs with only 500 offspring
can only detect an effect of sire when total variation
in DI and the true heritability of that variation
are high. Note that the average P-value never
approaches 0.0, as expected if power were high.

0.8
B Half-sib ANOVA
0.7
Midparent-Offspring Regression
o 06 Parent-Offspring Regression (1 parent)
% + + + * * * * * * T ow *
> 05w s‘ N N mE R
o 04N
= N N N N
g0 N NER N N N
& N N BN SN 8 ENEEN
= N 0N NE N
S 024N W EN SN B NN
> N ‘NERN NE NN
<
N NN NE NEN
0.1 N W EN ‘NE NEN
N W AN N NERN
o ENE NENENENENENENENENEN
True#—p 01 04 08 01 04 08 01 04 08 01 04 08
Low Var DI Med Var DI High VarDI  Very High Var DI

Figure 11.8 Average significance of sire effect for different methods across different levels of variation in DI
and true heritability. Means are shown. N = 800 simulations for each mean for both midparent—offspring
regression and parent-offspring regression based on one parental value. N = 2400 for half-sib ANOVA.
Data are pooled across different breeding combinations. P-value of sire effect for half-sib ANOVA is

calculated using the dam mean square as the error term.

*Half-sib ANOVA significantly different from

both midparent—offspring and single parent-offspring regression at P < 0.0001. + Halfsib ANOVA
significantly different from midparent-offspring regression at P < 0.05. & Half-sib ANOVA significantly
different from parent-offspring regression at P < 0.05. : '
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The second result made clear_in figure 11.8-is
that the nested half-sib design is far more effective
than parent-offspring regression at detecting
genetic variation in FA (overall t-test, £ = 51.38,
P < 0.0001, mean difference = 0.176) and mid-
parent-offspring - - regression = (overall = #-test
t=51.83, P < 0.0001, mean difference = 0.178).
This enhanced performance of the nested half-sib
design occurs despite the fact that we have lumped
all the simulated combinations of sire and dam
numbers together for comparison, and some of
these combinations have greater power than others.
The power of the regressions are not better than the
type I error rate, even when the variation in DI and
the true heritability were high. Regressions are poor
methods. for determining the genetic basis of DI
This suggests that all of the parent-offspring regres-
sions in the literature offer no information about
the inheritance of FA or DI.

The FA of a parent is only a single realization of
DI, and single realizations of DI provide little infor-
mation concerning the true value of DI, and thus
very little predictive information about DI of its off-
spring. Nested half-sib designs outperform the
regression methods because they use information
on family means of FA.

Optimizing the Nested Half-Sib Design

The performance of each of the 24 combinations of
dam and sire numbers is compared in figure 11.9.
Clearly, there is a large effect of family size on the
ability to detect a sire effect, with its additive com-

ponent (Fy321334 = 9.77, P =0.0001). Power is

highest when there are relatively few sires (4) and
a large number of dams per sire (25). As we would
expect, sire effects are also more easily detected
when there is high variation in DI and high herit-
ability of DI (DI variation: F, 1599 = 1189.48,
P= 0.0001; hefltablllty: F2,21599 = 551,35,
P =10.0001). The effect of breeding design also
varies with DI variation and the true heritability
(breeding design by DI variation: Fag 21599 = 3.36,
P =0.0001; breeding design by true heritability:
F46’21599 = 152, P= 00132, breeding design bY
DI variation by true heritability: Fs; 21599 = 1.37,
P = 0.0110). When DI variation and true heritabil-
ity are high, it is easiest to detect an effect of sire
with small clutches (2 offspring/clutch), and with an
intermediate number of sires and dams per sire (10)
(figure 11.9A). When overall variation is low, and it
is difficult to detect an effect of sire, there is little

Genetic Causes

difference between the breeding designs because

none of the designs have any power. For intermedi-
ate conditions," breeding design has a dramatic
effect on P-value.

These results should not be taken as a definitive
indication of the optimal design. In this simulation,
we used minimization of the P-value of the sire
effect as our criterion for an effective breeding
design. Other criteria, such as accuracy, could pro-

duce slightly different results. Therefore we would

take the numerical recommendation of four sires
with a healthy dose of skepticism, but we do suggest
that empiricists maximize the number of dams per
sire. Family means are essentially the units of mea-
surement. Because of the loose relationship between
DI and FA, many family means (i.e., replications)
are needed to precisely measure the effect of an
individual sire.

To Pool or Not To Pool

Another issue that affects the analysis of nested
half-sib designs is the decision about whether to
pool dam and error terms when the dam-level effect
is not significant. Normally, the effect of sire is
tested using the mean square of dams nested within
sires as the error term. However, some studies (e.g.,
Tomkins and Simmons 1999) have tested the sire
effect by pooling dams and testing over the mean
square error, provided that the dam effect was not
significant. In doing so, number of degrees of free-
dom in the error term is increased, which in turn
increases the power of the test. Unfortunately, this
procedure is always inappropriate in a nested half-
sib design, as the dam component includes an addi-
tive genetic causal component, as does the sire com-
ponent. Assuming that the dam component is equal
to the error component is equivalent to assuming
that there is no additive genetic variance in the trait.
Pooled tests have been used in several published
studies as a last attempt to detect additive genetic
variation. Despite the fact that we believe pooling to
be inappropriate, it is useful to investigate the effect
of pooling on power. We first tested the effect of
pooling when there was no additional effect of
maternal family above that provided by additive
genetic effects for low, medium and high levels of
variation in DI Here, we investigate the effects of
the practice of pooling on the ability to detect an
effect of sire. :
We first tested the effect of pooling when there
was no additional effect of maternal family above
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that provided by additive genetic effects for low,

medium, and high levels of variation in DI In

these simulations we- first tested the dam term
over the error term. If the P-value for this test was
greater than 0.15, we pooled, otherwise we did not.
These results are shown in figure 11.10a. The aver-
age P-value of the sire effect over all treatments was

lowest when tested using the nested dam mean .

square as the error term (paired t-test, z = 8.09,
N = 21,600, P < 0.0001). However, the effect of
sire tested over a pooled error term had a slightly
lower P-value when there was a high variation in DI
and a high true heritability. These differences were

quite small. The largest difference in P-values where

pooling outperformed using dams as the error term
was 0.011.

Next, we repeated this analysis assuming that
the maternal family effect was equal to the indivi-
dual variance, as above (results not shown). In this
case, a paired t-test showed no significant difference
in  power overall (t=0.58, N =21,600,
. P=0.564). As above, pooling gave rise to less
- power when variation in DI was small, and greater
power when variation in DI was large. This
increased power is spurious, as pooling gives a
biased estimate of the appropriate mean square,
even in cases where the dam effect is not significant.

Box—Cox Transformations

One difficulty of analyzing FA is that in many cases
it has a half-normal distribution, rather than the
normal distribution assumed in parametric statis-
tical tests. Many authors have suggested using the
Box~Cox algorithm for finding the optimal trans-

formation of the data to normality (Palmer and"

Strobeck 1986; Swaddle et al. 1994). The Box-
Cox algorithm chooses the parameter A in the func-
tion Y' = (Y* —1)/A to optimize the fit of Y’ to a
normal distribution. If the true distribution of the
FA is a half-normal, as in our simulations, then this
seems a very dubious undertaking. In order to
create a left tail to the distribution, the transforma-
tion must magnify tiny differences very near 0. This

suggests that the Box—Cox transformation will .

magnify error variance of small FA values, while
‘compressing the potentially real differences in the
right tail of the raw data. This should decrease the
overall power of any statistical tests.

As expected from this argument, Box-Cox
transformation decreases the probability of detect-
ing an effect of sire regardless of the error term
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employed (figure 11.10b, paired #-tests, dams as
error - term: ¢t = —10.19; pooling allowed: ¢ =
-10.09, P =0.001, N =21,600). The difference
in average P-values between the two methods is
small (—0.008 for both methods). Still, Box-Cox
transforming the data rarely increased the ability
to detect an effect due to sire, and for most treat-
ments, slightly decreased our ability to detect an
effect of sire.

The modest impact of Box—Cox on power may
be due to the fact that the sire term is tested over the
dam term, which is determined from multiple off-
spring in all of our simulated experiments. Family
means will more closely approach a normal distri-
bution than the individual FA values. When other
measures of asymmetry besides FA=IL—Rl are
used (Palmer and Strobeck 1986; Palmer 1994),
such as size-adjusted FA, the distribution of asym-
metry values may not depart from normality so
drastically, in which case the Box-Cox transforma-
tion could still prove useful.

Sample Size and Power

Our review of the literature suggests that the repeat-
ability of FA is fairly high, but the heritability of FA
is low. Examination of figure 11.8C suggests that a
nested half-sib analysis of variance with 25 dams
per sire, and five offspring per clutch maximizes
power in such cases. Figure 11.11 shows the total
sample size necessary to detect an effect of sire with
probability 90%, for various levels of variation in
DI and genetic variation. Even when variation in DI
and true heritability are high, a sample size of
approximately 1000 offspring is required to achieve
high power. When variation in DI isttow, 50,000 to
100,000 offspring are needed to achieve high power
according to our model. There is a large discre-
pancy between the sample sizes required to achieve
high power and the actual sample sizes employed in
most previous studies (table 11.1).

Discussion

In this chapter we have explored the consequences
of the “standard model” of the relationship
between asymmetry and developmental instability
(DI) for studies of the inheritance of DI. Our main
conclusion is that the question of whether there is
additive genetic variation in DI and hence whether
DI is capable of evolving in the face of selection is
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completely unresolved. This profound uncertainty
has multiple sources, each with serious implications
for the study of the evolution of developmental
instability.

The first source of uncertainty is the experimen-
tal data. Our review of the literature makes clear
that the heritability of FA is, on the average, quite
low, as made clear in a number of recent reviews
(Whitlock and Fowler 1997; Gangestad and
Thornhill 1999; Van Dongen 2000a; Van Dongen
and Lens 2000). Furthermore, the vast majority of

estimates of the heritability of FA are not signifi-
cantly different from 0. In fact, the proportion of
estimates that are significantly different from 0 is
very close to the expected type I error rate
(0.082). Of the 15 significant estimates in our sam-
ple, eight are from full-sib or twin designs that can-
not separate additive genetic variance from other
genetic and nongenetic sources of variation.
Similarly, five of the six parent—offspring regres-
sions cannot separate additive genetic variance
from environmental effects. The most reliable sig-
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_nificant heritability estimate is from an exemplary
half-sib experiment on sternopleural bristle number
in Drosophila melanogaster, with a total sample
-size of over 10,000 individuals (Scheiner et al.
1991). Two artificial selection experiments on ster-
nopleural bristle fluctuating asymmetry in D. mela-
nogaster have also provided significant evidence for

heritability of FA (Mather 1953; Reeve 1960).

Thus, there is some consistent evidence for the her-
itability of FA in this one character in one species.
This picture is not significantly altered when we
include estimates from three studies that did not
give numerical results for nonsignificant estimates.
Parker and Leamy (1991) found two significant
relationships out of nine. Cadée (2000) found one
out of 12 (the number of estimates in this study is
not explicit). Woods et al. (1999) found no signifi-
cant additive genetic variation (after a correction
for multiple comparisons) for 12 different esti-
mates. There is little evidence for an additive genetic
component to DI in the vast majority of traits.
Conversely, our simulation results make it clear
that most of the experiments that have been carried
out had designs ill-suited to the detection of genetic
variation in FA and therefore DI. A prime example
is the common use of parent—offspring regressions.
Our simulation results indicate that regressions
have literally no power to detect parent—offspring

resemblance in asymmetry in the range of sample
sizes commonly employed. This large segment of
the literature on inheritance of FA is simply not
informative. Full-sib designs cannot estimate the
proper causal components of variance, and are
therefore not informative about the inheritance of
FA and developmental instability for a different
reason.

These problems pose a challenge to field studies
where the assignment of parentage is difficult.
Many of the studies that have used full-sib or par-
ent—offspring designs do so because it is possible to
identify maternal parentage in unmanipulated field
populations, but extremely difficult to identify
paternal parentage. Studying inheritance in the nat-
ural environment is a laudable goal. However, since
neither of these popular designs is capable of
answering the question posed, it is difficult to justify
carrying out such experiments. The question of
whether there is additive genetic variance for fluc-
tuating asymmetry is one of many cases in evolu-
tionary biology where we will be forced to rely on
model systems or populations where investigators
have developed extensive pedigree information.

It is also important to bear in mind that in the
“standard model” of the relationship between fluc-
tuating asymmetry and developmental instability,
the heritability of asymmetry may be much less
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than that of developmental instability (Whitlock -

1996; Houle 1997). The degree to which heritabil-
ity of FA underestimates that for DI is the inverse of
the repeatability, which ranges from 1.7 to 32 times
for the data in table 11.1, with an average of 5.4
times. Thus even though the average heritability of
FA is certainly less than 10%, the heritability of
developmental instability might still be rather
high, at least for some traits. It is quite disturbing
that, after almost 50 years of studies of the inheri-
tance of asymmetry and DI, we still cannot say
whether either is heritable in general, and we can-
not set a meaningful upper bound on the heritabil-
ity of DI '

Houle (2000) noted that the high repeatabilities
of FA in some traits pose some challenges to the
“standard model” of independently developing,
normally distributed body parts, controlled by one
overall developmental variance or developmental
instability. If repeatabilities are as high as the aver-
age or highest values found in the studies reviewed
here, the overall distribution of DI values must be
extremely skewed, with most individuals having
*very low DI, with the variance due to a few indivi-
duals with very large DI values. Example distribu-
tions having such extremely skewed distributions of
DI values are shown in figures 11.1 and 11.4. It is
unclear what processes could give rise to such
extreme distributions, particularly in genetic terms.

One explanation of this is that the “standard
model” itself may be incorrect. For example, the
sizes of body parts may not be normally distributed.
This could arise either from developmental processes
per se (Klingenberg and Nijhout 1998, 1999;
Klingenberg, chapter 2, this volume) or from envir-
onmental insults such as physical traumas, starva-
tion, or asymmetical use (Houle 2000). Organisms
with serial development of homologous parts, such
as plants (Wilsey and Saloniemi 1999; Freeman et
al., chapter 20, this volume), could provide a useful
way to estimate the underlying distributions of parts
and a partial test of the standard model.

Another fundamental uncertainty is whether
each individual possesses any overall ability to resist
or correct the development of asymmetrical parts.
While it is clear that overall asymmetry can be
affected by the environment (Parsons 1990; Lens
and Van Dongen 1999), it is not clear whether var-
iation among individuals following such manipula-
tions is ‘due to chance, degree of exposure to the
manipulation, or to some property of the indivi-

duals themselves. It is possible ‘that the details
of the development of each part of the body may
render it more or less susceptible to environmental
effects, but that these differences in susceptibility
may be independent among traits. The inheritance
of developmental instability could be of fundamen-
tal importance if there were a generalized buffering
capacity that applied to all or even many morpho-
logical traits simultaneously. However, if what is
evolvable is the independent susceptibility of traits
to insult, the arguments that FA and DI indicate
overall quality of the individual must be false.
Until such time as we reliably measure the additive
genetic component of variation in FA for multiple
traits in the same species, and therefore detect any
genetic relationship among their asymmetries it will
be impossible to answer these questions through
studies of whole-organism asymmetry. o
In summary, we recommend that future quanti-
tative genetic studies of asymmetry and develop-

‘mental instability be carried out in species where

environmental effects can be partitioned, and the
genetic components of variation can be unambigu-
ously. partitioned into additive and nonadditive
parts. Furthermore, the high realization variance -
of fluctuating asymmetry precludes the use of par-
ent-offspring regression as an effective experimen-
tal strategy. The simplest design that meets these
criteria is the nested half-sib design. More compli-
cated designs such as diallels or pedigree analyses
might also be suitable. To get the most power from
a nested half-sib design, our analysis suggests that
one should maximize the number of full-sib families
within each half-sib family. Finally, it is clear that
enormous sample sizes are usually required to
detect any signal at all. The detection of additive
genetic effects on asymmetry is a challenging experi-
mental task.
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