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GENETIC COVARIANCE OF FITNESS CORRELATES: WHAT GENETIC
CORRELATIONS ARE MADE OF AND WHY IT MATTERS
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Abstract.—The genetic variance-covariance matrix, G, is determined in part by functional archi-
tecture, the pathways by which variation in genotype influences phenotype. I develop a simple
architectural model for G for two traits under directional selection constrained by their dependence
on a common limiting resource. I assume that genetic variance is maintained by mutation-selection
balance. The relative numbers of loci that play a role in acquiring versus allocating a limiting
resource play a crucial role in determining genetic covariance. If many loci are involved in acquiring
a resource, genetic covariance may be either negative or positive at equilibrium, depending on the
fitness function and the input of mutational variance. The form of G does not necessarily reveal
the constraint on resource acquisition inherent in the system, and therefore studies estimating G
do not test for the existence of life-history tradeoffs. Characters may evolve in patterns that are
unpredictable from G. Experiments are suggested that would indicate if this model could explain

observations of positive genetic covariance.

Key words.—Evolutionary constraint, life history, quantitative genetics.

Received May 23, 1990. Accepted August 14, 1990.

In the past 10 years, it has been argued
that the genetic variance covariance matrix
is of some fundamental importance in shap-
ing the evolutionary potential of popula-
tions (Lande, 1979, 1982; Cheverud, 1982,
1984; Maynard Smith et al., 1985; Clark,
1987a). One area where this concept has
taken rootis in the study of life-history char-
acters, where the limitations on their evo-
lution are expected to be reflected in nega-
tive genetic covariances (Lande, 1982;
Reznick, 1985; Bell and Koufopanou, 1986;
Charnov, 1989).

Such interest has focussed attention on
the processes that potentially shape genetic
covariances. As with genetic variances, ei-
ther mutation-selection balance or balanc-
ing selection could explain their mainte-
nance (Barton, 1990). There is ample
evidence that at least some genetic variance
and covariance is maintained by mutation-
selection balance (Crow and Simmons,
1983; Charlesworth, 1987; Kondrashov,
1988; Barton and Turelli, 1989; Barton,
1990). This, plus its conceptual simplicity

! Present address: Department of Ecology and Evo-
lution, University of Chicago, 1103 E. 57th St., Chi-
cago, IL 60637 USA.

has made mutation-selection balance a fa-
vorite basis for models of variance and co-
variance. The mutation model used for
much of this work is that of a single locus
capable of producing the full range of pleio-
tropic effects on phenotypes. The effects of
alleles are then assumed to follow some
multivariate distribution, with given co-
variance. Then genetic covariances will
similarly depend on the balance between the
input of mutational covariance and the
power of selection to reshape it (Lande,
1980; Turelli, 1985; Clark, 1987a). This ap-
proach has been useful in exploring many
issues raised by the mutation-selection bal-
ance model.

Alternatively, one may build a mutation
model based on the assumption that there
is more than one type of locus, each with a
fixed pattern of pleiotropic allelic effects.
This reflects the well-known fact that in-
dividual loci have very specific roles, usu-
ally restricted to a single metabolic or de-
velopmental pathway. These sets of
pathways form the underlying functional ar-
chitecture that determines the pattern of
pleiotropic effects. In this approach, each
locus affects only one fundamental, usually
unobserved, character. The genetic vari-
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ance-covariance matrix (G) we then observe
is a function of the genetic variance in fun-
damental characters, and functional archi-
tecture. Wagner (1989) has presented an el-
egant linear model of this type. Similar
approaches have also been applied to pairs
of morphological characters (Riska, 1986;
Slatkin, 1987).

In this paper, I will explore the conse-
quences of adopting an architectural model
for characters under directional natural se-
lection, which I will refer to as fitness cor-
relates. Such characters will not have their
equilibrium means determined by selection
alone, as no character can increase without
limit. One reasonable source of constraint
on fitness correlates is the ability of the or-
ganism to acquire limiting “resources,” such
as carbon, time, or space. The way in which
the organism allocates these resources to dif-
ferent characters then determines the phe-
notype. The architectural model is a con-
venient framework for studying the
covariance of directionally selected char-
acters, as constraints on acquisition may be
incorporated in a straightforward fashion.

There are two ways that G can reflect evo-
lutionary constraints. First, characters may
have little additive variance. A large num-
ber of experiments have now shown that
this is rarely, if ever, the case (Istock, 1983;
Roff and Mousseau, 1987; Mousseau and
Roff, 1987). Second, the pattern of covari-
ance among characters may be such that
segregating alleles that increase one fitness
correlate have antagonistic effects on other
fitness correlates. This leads to the predic-
tion of negative genetic covariance between
fitness correlates (e.g., Lande, 1982). The
logic of this is that alleles that have positive
pleiotropic effects on sets of characters will
be fixed rapidly, those with negative effects
will be lost, while those that affect some
traits positively and others negatively will
tend to remain at intermediate frequencies
longer. This prediction of negative genetic
covariance has been taken so seriously that
some authors have claimed that positive ge-
netic covariances would challenge current
theories of life history evolution (Reznick
et al., 1986; Rose, 1984; Scheiner et al.,
1989).

However, the definition of constraints that
leads to the view that G will reflect them is
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a very weak one. Clark (1987a), for exam-
ple, defines a constraint as “‘those aspects
of the inheritance of traits that prevent nat-
ural selection from resulting in the steepest
ascent approach of the mean phenotype to
the optimum.” Clearly, most forms of G
constitute a constraint in this sense (Lande,
1979). However, the definition of constraint
more appropriate to fitness correlates is that
which prevents, rather than delays, the at-
tainment of phenotypes favored by selec-
tion. Unless G takes a rather extreme form,
for example correlations of +1 or —1 (e.g.,
Via and Lande, 1985), one will be unable
to determine from examination of G wheth-
er all variation is in fact constrained by
pleiotropic effects. Evolution will still occur
if even a single locus with transient effects
on G is capable of mutation to beneficial
alleles. The question of whether G reflects
constraints is distinct from that of whether
constraints exist.

In keeping with this, competent estimates
of covariances for fitness correlates are as
likely to be positive as negative (e.g., Rose
and Charlesworth, 1981; Hegmann and
Dingle, 1982; Bell, 1984a, 1984b; Yoshi-
maru and Mukai, 1985; Mitchell-Olds,
1986; Futuyma and Philippi, 1987; Gar-
land, 1988; Billington et al., 1988; Rausher
and Simms, 1989; Clark, 1990). The inter-
pretation of such results is contentious, as
there is an extensive catalog of factors that
can lead to spuriously high estimates of co-
variances (Rose, 1984; Reznick, 1985; Rez-
nick et al., 1986; Bell and Koufopanou,
1986; Clark, 1987b). This has led to the
suggestion that costs of reproduction are
better demonstrated through interpopula-
tion correlations or experimental manipu-
lations, which do seem to reflect costs in the
majority of studies (Reznick, 1985; Bell and
Koufopanou, 1986; Partridge and Harvey,
1988).

The one potential explanation for posi-
tive additive genetic correlations that has
not received much attention is that they may
in fact be positive at equilibrium. I will show
that when mutation-selection balance is re-
sponsible for the maintenance of genetic
variance there are circumstances where pos-
itive additive covariance is expected at
equilibrium. I model an organism whose
fitness is completely determined by two fun-
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damental, unobserved characters: the
amount of limiting resource it acquires and
the way it allocates that resource to ob-
served characters. Variation in allocation
generates negative covariance, while vari-
ation in acquisition generates positive co-
variance between the observed characters,
and the overall sign of the covariance is
determined by the relative magnitudes of
the two covariances. I assume a simple
“functional architecture” where loci affect
either acquisition or allocation, but not both.
This assumption is obviously to some de-
gree unrealistic, but may conform more
closely to the actual situation than assuming
all loci are equivalent. By explicitly consid-
ering architecture, I can explore intuitively
reasonable assumptions about the muta-
tional sources of covariance. I will focus on
the relative numbers of loci that potentially
affect allocation and acquisition as a prin-
cipal determinant of mutational covariance.

Elements of this basic idea have been dis-
cussed by other authors. The possibility that
deleterious alleles make a substantial con-
tribution to genetic covariance is widely
mentioned (e.g., Falconer, 1981 pp. 306—
307). Van Noordwijk and de Jong (1986)
suggested the acquisition-allocation dichot-
omy as an explanation for positive pheno-
typic covariance. Bell and Koufopanou
(1986) placed this idea in a more genetic
context, and used it to argue that nonequi-
librium populations should have higher ge-
netic covariance than equilibrium ones.
Charlesworth (1990) has shown generally
that negative covariance is never necessary
even when the population is at an optimum.
He also shows that mutation could supply
enough positive covariance to swamp the
predominant pattern of negative covariance
favored by selection.

To organize these results I will focus on
determining the ratio of the numbers of ac-
quisition and allocation loci that would lead
to an expectation of no covariance between
a pair of characters under directional selec-
tion. I call this ratio the “zero covariance
architecture (ZCA). This reduces the ques-
tion of whether such a model can explain
observations of positive covariance to
whether it is likely that the ratio of acqui-
sition to allocation loci could be as large as
the ZCA.
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THE MODEL

I consider a pair of traits, z, and z,, which
are under directional selection. The vector
z consists of the phenotypes z, and z,, of
these two traits. The variation in z is due
to genetic and environmental effects. Phe-
notypic, environmental, and genetic vari-
ances and covariances will be symbolized T

, E ...,and G ... respectively. I as-
sume throughout an 1nﬁn1te random-mat-
ing diploid population at gametic-phase
equilibrium, no epistatic interactions, and
no genotype-environment correlations or
interactions.

Genetic Architecture

I assume that z is determined by two fun-
damental variables: R, the amount of re-
source the organism acquires, and P, the
proportion of those resources allocated to
z,. Loci that affect z do so either by affecting
the acquisition of resources from the envi-
ronment (R loci) or by affecting the allo-
cation of acquired resources to traits (P loci).
This resource-based functional architecture
is represented in Figure 1. Then

=R(1 —P) and z,=RP. (1)
The variation in R and P has both a genetic
and an environmental component
R=R+r+e
and _
P=P+p+te, )

where R and P are means, r and p represent
genetic deviations, and es are the environ-
mental deviations in each phenotype.
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FiG. 2. A representative adaptive surface on which
z, and z, evolve. The curved, dashed lines represent
fitness contours, with low fitness at the lower left. Evo-
lution is constrained by the assumption that the ex-
pected amount of resource acquired is less than R,
represented by the heavy diagonal solid line. In this
hypothetical case, the population mean, Z is on a ridge
of high fitness whose peak is the dashed diagonal line
labeled optimal allocation. The individual z has higher
than average fitness because it has above average re-
source acquisition, the sum of z, and z,, although it
has allocated its resources in a proportion far from the
optimum.

Selection

1 consider two families of fitness functions
that share the feature that fitness is a mono-
tonically increasing function of resource ac-
quisition, R, and stabilizing selection on re-
source allocation, P. Thus selection is
primarily directional on both z, and z,. A
representative adaptive landscape of this
type is shown in Figure 2.

To determine selection coeflicients, I as-
sume that allelic effects are small, relative
to R and P. Then, following Kimura and
Crow (1978), the expected fitness of a ge-
notype with phenotypic effects r; and p; is

Vi/,:f f WR + r, P+ p)

-F(R, P) dRdP. 3)
For both R and P loci, selection on geno-
types is parameterized using relative geno-
typic fitnesses of W, = 1 for the optimal
homozygote, W,, = 1 — s for the mutant
homozygote, and W,, = 1 — hs for their
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respective heterozygote. The selection co-
efficient against allele 1 is

s =Woo — W)/ Woo, 4)
and its dominance for fitness is
h= (Woo - WIO)/(WOO - I7Vu)~ 5

Maintenance of Genetic Variance

I assume that genetic variance at R and
P loci is maintained by mutation-selection
balance. Alleles have additive effects on
phenotypes R and P.

I model the variance at acquisition, or R
loci using a standard two allele model of
mutation-selection balance. I assume that
there are n, identical acquisition loci, which
undergo reversible mutation at rate u,. Mu-
tant alleles always decrease the acquisition
of resources by an amount a,. When the
dominance for fitness, #4,, is not 1/3, the
equilibrium frequency of a mutant allele is

(hrsr + 2u, —
. V(h, + 2u,)? + 4us,3h, — 1)) 6
4= 25,3k, — 1) > (©)
and when 4, = 1/3,
. 3u,
~—— 7
78 5+ 6 @)

assuming that § < 1. The genetic variance
in acquisition is

®)
I assume that there is a maximum amount

of resources that a population may be ex-
pected to accumulate

GR = 2nrér(1 - qr)a%'

R, = R. )
The realized mean is
R =R, - 2n4aH, (10)

where H is the “hardness” of genotypic ef-
fects. H expresses the degree to which seg-
regation of deleterious alleles reduces the
population mean, and ranges from O to 1.
If H = 1, the expected amount of resource
an individual acquires is determined ab-
solutely by its genotype, and genotypic ef-
fects are “hard.” If H = 0, only the relative
ability to acquire resources is affected, the
population mean will be unaffected by mu-
tant alleles, and genotypic effects are “soft.”
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When H > 0, equations (4) and (10) must
be solved simultaneously or iteratively to
obtain R and s,. Figure 2 represents a hard
selection case, since the mean level of re-
source acquisition is less than R,.

Genetic variance at the allocation, or P,
loci is modeled using a three allele model
(Turelli, 1984). I chose a three allele model
to emphasize that both mutations that in-
crease and those that decrease P are al-
lowed, unlike those affecting R. The three
alleles, Y., Y,, and Y_, have effects a,, 0,
and —a,, respectively on the phenotype. I
assume that the population has evolved so
that P maximizes mean fitness. For the
symmetrical fitness functions I assume, this
assures that the expected fitnesses of Y, |,
and Y_, are equal. Mutation between the
three alleles depends on the rate u,, and
obeys the following scheme:

™R By/2
Y_ 1 = YO = Y+ 1e
Hp/ 2 Ky

There are n, identical allocation loci. The
equilibrium frequency of the nonoptimal
alleles 1 and — 1 is

Qup + hys, —
. V(s,h, + 21,2 — 2u,5,(6h, — 1))
T 25,6k, — 1) ’

(11

neglecting terms in u,s,. The equilibrium
genetic variance is

Gp = 4n,g,az. (12)

Variance and Covariance of z, and z,

Since z, and z, are products of R and P,
G is a simple function of the variance and
covariance of R and P. Assuming there is
no genetic covariance between R and P, the
genetic variance-covariance matrix G has
elements

G“ = (_1 - P)zGR j' GPR2 + GRGP (13)
Gay = P2Gy + GpR® + GrGy (14)
G12 = P(l - P)GR - GPR2 - GRGP' (15)

Standard Parameter Values

To obtain numerical results, I assume a
standard set of parameter values, shown in
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Table 1, and explore the effect of departures
from them two variables at a time. Few of
the parameters in this model have been well
estimated in any population. Mukai’s (Mu-
kai et al., 1972) work on viability mutations
in Drosophila melanogaster, coupled with
other work on total fitness effects (Sved,
1971, Sved and Ayala, 1970; Simmons and
Crow, 1977; Crow and Simmons, 1983;
MacKay, 1986), suggests that the propor-
tional decrease in fitness due to an average
polygenic mutation is in the range 0.02-
0.08. I will assume effects at the upper end
of this range, as the relevant experiments
were done in the lab under optimal condi-
tions. I assume that R and P mutations have
equal effects, a,, on z,, and that a,/R, = a,/
P = 0.04. The environmental variances are
chosen so that when P = 0.5, R = 10, and
the phenotypic covariance T, = 0, the co-
efficient of variation of z, will be approxi-
mately the median value for life history
characters (Houle, 1991). In addition, I as-
sume that E and E, contribute equally to
the environmental variance in z,. The stan-
dard mutation rate is consistent with Kon-
drashov’s (1988) recent review.

RESULTS
Additive Fitness Functions

Pairs of characters such as present and
future reproduction are likely to have ad-
ditive effects on lifetime fitness. Fitness will
then depend primarily on z, + z, = R. It
does not seem biologically plausible to as-
sume that fitness depends solely on R, so I
also assume that there is stabilizing selec-
tion on P. Stabilizing selection is repre-
sented by a gaussian fitness function so that
selection coeflicients may be obtained ex-
actly. Any symmetrical stabilizing fitness
function would give equivalent results, as
gene frequencies in the finite allele model
considered depend only on the selection co-
efficients of nonoptimal alleles (Egs. 6, 11).
Generalizing slightly, suppose that fitness
can be written

W(R, P) = Rkexp [——(Pz;—f")f]. (16)

When k < 1, there are diminishing returns
in fitness for increases in R; and when k >
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TaBLE 1. Standard parameter values and notation.
Parameter Loci Symbol Value
Mutation rates R wr 5 x 10-5
P “p 5 x 10-5
Optimal acquisition R R, 10
Hardness of genotypic effects R H 0
Average allelic effect on R a, 0.40
P ap 0.02
Average allelic effect on z5 R, P as 0.20
Number of loci R n,
' P np
Environmental variance of R ER 2.0
P Ep 0.005
Genetic variance, covariance G...
Phenotypic variance, covariance T..
Selection parameters
Optimal allocation P P, 0.5
Strength of selection on P P w2 0.4
Exponents Jk 1.0

1, W is an accelerating function of R. The
parameter w? determines the strength of sta-
bilizing selection on P for the optimal al-
location proportion, P,.

For most values of k, only approximate
numerical results can be obtained. How-
ever, if k = 1, equation (3) may be solved
exactly using (16), after making the as-
sumption that R and P are bivariate nor-
mal. This is shown in Appendix A. Since
both R and P are bounded (R > 0, and 0
= P = 1), this requires the additional as-
sumptions that \/T, < R and VT, < P
or \/T, < 1 — P, whichever is smaller.
This approach also requires a, < R, g, <

Pand a, < 1 — P. Overall mean fitness is

W= exp [——-_ (Pz;, ")2]

w2 (-  TgeP, — P)
—|R + —}, 17
v, < v, > an
where V, = T, + w2
A nonzero phenotypic covariance has an
effect on the equilibrium value of P, but
little impact on genetic variances. Differ-
entiating (17) with respect to P, W is max-
imized when
p
). (18)

Thus, any phenotypic covariance between

- [ = P, —

)

R and P will tend to drive P away from P,.
If V, is not small, since Tz, < R, condition
(18) reduces to

TRP =
— =P, — P 19
5 =P, (19)
The selection coefficient of a genotype J,
with an effect p; on P and no effect on R is

p. _ T
spz%<%+ (P—P0)+T5P). (20)

The last two terms cancel, so at equilibrium
a mutant with effect p; will have approxi-
mately the same fitness regardless of the val-
ue of T'gp. Similarly, the selection coefficient
for a mutant with an effect r; is

s, = di
R+ TP
r.
~ =, 1
% (21)

Therefore, unless V; is very small, pheno-
typic covariance will have little effect on
genetic variances or covariances. Further
calculations will assume that T, = 0. This
considerably simplifies equation (A6), be-
cause fitness will be maximized at P = P,
Then, the mean fitness of genotype i, with
phenotypic effects p,; and r; is



636

log pr

—6.0 0.7

log ar

Fic. 3. Contour plot of log,,n,, which is required
to generate the amount of genetic variance discussed
in the text, as a function of log,.u, and log,.a,. Defi-
nitions of parameters, and values used for the param-
eters not shown are given in Table 1. The contour
interval is 0.25. The contour lines on this and the next
figure connect pairs of parameter values which require
the same number of loci. The numbers on the solid
contour lines are the values of log,,n, required. For
example, iflog,,a, = —0.7 (a, = 0.2), and log,ou, = —5
(u, = 107%), then log,,n, = 4, and n, must be about
10,000 to generate a coefficient of variation of 10. If
the change in contour for a change in one parameter
value remains constant for all values of the other pa-
rameter, as it does here, the two parameters on the axes
do not interact in determining number of loci. This is
the case in this figure. To see what an interaction would
look like, see Figure 4.

= w2 —-p?| -
W, = \/;Sexp[zys}(R-l-ri). (22)

The equilibrium genetic variance in R,
G, may be obtained by making appropriate
substitutions into (5), (7), (8), (10), and (21).
This yields

nua.R,
GR z —_-
1+ 2nuH

Similarly substituting appropriately into
(A6), (4), (5), (11), and (12) yields

(23)

Gy = np<4u,,Vs ta (24)

= V(4u,V5)* + aZ)

One important question is how many R and
P loci it would take to generate a typical
amount of variance in z. Recent reviews of
data on life-history characters suggest that
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Fi1G. 4. Contour plot of log 1, required to generate
the amount of genetic variance discussed in the text,
as a function of log w? and a,. For explanation, see
Figure 3. Examination of the figure shows that w? and
a,do interact in determining 7,. For example, near the
top of the figure a small change in w2 has no effect on
n, when a, is small, as shown by the vertical contours
in the upper left, and some effect when a, is large, as
shown by the departure of the contours from the ver-
tical.

a genetic coefficient of variation (e.g.,
100\/G,/z,) of 10, and heritability of 0.2
are approximate median values (Mousseau
and Roff, 1987; Roff and Mousseau, 1987;
Houle, 1991). Assuming that acquisition and
allocation loci each contribute half this vari-
ance, how many loci of each kind are nec-
essary under this model? A contour plot of
the number of acquisition loci necessary
when P = 0.5 is shown in Figure 3, using
the standard parameter values given in Ta-
ble 1. Many loci, with relatively large effects
are clearly necessary, however for values of
a, near the standard value (log,oa, = —0.4)
they are far less than the numbers of loci
that are capable of influencing fitness cor-
relates (see Discussion). Clearly for param-
eter combinations leading to », > 104, mu-
tation-selection balance will be unable to
maintain the necessary variation.

A contour plot of the number of P loci
necessary is shown in Figure 4. Clearly, rel-
atively few P loci are necessary to maintain
measurable genetic variance (cf. Turelli,
1984). When a}/w? = s, > pu,, the model
shows the insensitivity to a,, which leads to
the “‘rare alleles” approximation for the
continuum of alleles model (Turelli, 1984;
Barton and Turelli, 1987). When w? is very
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large, however, selection becomes weaker
than mutation and all three alleles in the
model become equally common. This upper
limit to genetic variance would not occur in
a true continuum of alleles model.

Finally, substituting (23) and (24) into
(15), yields a condition for the genetic co-
variance, G,,, to be zero

Ro(4;.¢st +a; — V(@u, V) + aZ)
(1 + 2nuH)(an B0 — P)

SIS

(25)

I define the ratio, n,/n,, which satisfies such
an equation the ‘‘zero covariance architec-
ture,” or ZCA. If n,/n, is larger than the
ZCA, then the equilibrium covariance will
be positive. One interesting feature of equa-
tion (25) is that increasing the hardness of
genetic effects actually decreases the ZCA.
The decrease in Gy as hardness increases is
more than offset by the decrease in R?, which
determines the contribution of G, to G,
(equation 15). The change in ZCA due to
hardness will be small as long as n, < 1/u,,
so additional results assume H = 0.

Then, when the rare alleles approxima-
tion applies, for soft genetic effects (H = 0),
the ZCA reduces to

o 2 VR, (26)

n, auP( —P)
I have already assumed that a, < R, and
in effect that V; is within an order of mag-
nitude of P(1 — P). Therefore, assuming
that the mutation rates are of the same or-
der, the ZCA will be greater than 1, with
most likely values being in the neighbor-
hood of 100 (for instance, using the param-
eter values in Table 1). The largest source
of uncertainty is in the value of w?, which
determines the strength of selection on P,
for which no empirical estimates for allo-
cation of resources are available. The value
chosen as a point of departure in Table 1 is
justified only in that it fulfills the order as-
sumptions used to obtain (26), and corre-
sponds to the strength of selection on some
morphological characters (Turelli, 1984).

A broader range of parameters may be
explored numerically by returning to the less
restrictive assumptions used to obtain (22).
For example, Figure 5 shows a contour plot
of log(ZCA) as a function of the effects of
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mutants at R and P loci. As expected, larger
average effects generally translate into larger
genetic variances for the appropriate phe-
notype, except where the “rare alleles” ap-
proximation applies for P loci, in the upper
half of the figure.

Figure 6 shows ZCA as a function of s,
determined by changing w?, and s, as a
function of R,. Like V, for P loci, R, directly
determines the strength of selection at R loci
(see equation 21). G, is proportional to s,
as expected, since s, > u,. The surprise is
that increasing s, by decreasing R, actually
decreases the ZCA. The reason is that G is
proportional to R,, while the contribution
of Gp to G,, is proportional to R2 (see Eq.
15).

When k # 1, equation (16) may be ap-
proximated using a Taylor expansion by
making the assumptions that w? > T, (¥,
~ w?), R is of order 1 or larger, and that R
> k. Taking expectations over R and P for
a genotype with effects r; and p, and in such
an expansion,

N el A
W, ~ Rrexp| ———2
, exp[ -

k P, — P
<1 +r,~1—é+p,»T

k(k— 1)
2 —_—
+ (2 + Tg) R
kP, — P)
+ @i, + Trp) R

_pit Ty Lk
2W2 i RPRWZ s

27)

where all terms of order R¥(a-2/w?) or larger
are retained. Numerical results not shown
suggest that Tzp has a negligible impact on
ZCA when k # 1, like when k = 1. I plot
the ZCA as a function of k and the average
effect of a mutation in Figure 7. As expected,
k has a large impact on the ZCA. In spite
of the curious shape of the contours, there
is in fact no interaction between k and a,.
The contours bend because I assume that
a,P = a,R = a,. Moving vertically in Figure
7 is equivalent to moving from lower left
to upper right in Figure 5. Results not shown
also suggest that there is no interaction be-
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FiG. 5. Contour plot of log zero covariance archi-
tecture (ZCA) for the additive selection case. ZCA is
the ratio n./n, necessary for there to be no covariance
between z, and z, at equilibrium. ZCA is shown as a
function of log a,., and log a,.,, where a, ... is the
average effect of a mutation at an R or P locus, re-
spectively, on z,. The contour interval is 0.25. The
contour lines on this and subsequent figures connect
pairs of parameter values that lead to the same ZCA.
The numbers on the solid contour lines are the values
of log,;ZCA predicted. For example, if log,,a,, =
log,oa, , = —1.0 (@, .. = 0.1), then log,,ZCA = 2, and
n,/n, must be about 100 for there to be no covariance
between z, and z,.

~2.9,%

tween k and any other parameters in deter-
mining ZCA, so the effects of the parameters
in Figures 3-6 also occur when k& # 1.

Multiplicative Fitness Functions
Many pairs of life-history traits will joint-
ly have a multiplicative effect on fitness,
such as viability and fecundity, or offspring
number and offspring quality. Such fitness
functions may be represented

W(R, P) = zizk = R++Pk(1 — Py. (28)

The optimal allocation proportion will al-
ways be greater than 0 and less than 1, but
its numerical value will depend on j and k.
Multiplicative fitnesses generate stabilizing
selection on P without the imposition of
additional constraints, as was necessary in
the additive case.

As in the additive case, when j = k = 1,
(28) may be used to solve (3) exactly. This
is shown in Appendix B. From (A12) one
can see that mean fitness is maximized when

= R_4TR.P
N 29
P 2R (29)
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FiG. 6. Log ZCA as a function of the logged selec-
tion coefficients, for the additive selection case. s, varies
as a function of R, and s, varies as a function of w2
For an explanation of the plot, see Figure 5. In order
for s, to be larger than shown here, E, would have to
be reduced.

At equilibrium, P = 1/2 when T, = 0, and
very close to 1/2 when it is not, as R >
Trp- Similarly, in the selection coefficients
for mutants at R and P loci, terms involving
Trpcan all be dropped as insignificant com-
pared to the dominant terms in R. There-
fore, I will assume that T, = 0.
The resulting selection coefficients are

—4r.
s,=16p? and s, = Rr,'

(30)

Comparison with (20) and (21) shows that
selection on genotypes that affect R is dou-
bled from the additive case when k£ = 1.
Selection on genotypes which affect P in the
multiplicative case is equivalent to the ad-
ditive case when V, = 1/8. This is about a
threefold increase over the arbitrary stan-
dard value I used for V, above. Maintaining
genetic variance will require correspond-
ingly more R and P loci than suggested in
Figures 3 and 4. As in the additive case, if
mutation is a weak force the ZCA can be
approximated

2Ry,
wall + 2nuH)

When genetic effects are soft, H = 0, the
ZCA will be approximately 50 for my stan-
dard parameter values, somewhat less than

€)Y

n,
np
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-0.5
log k
Fig. 7. Log(ZCA) as a function of the exponent k
and a,, for the additive selection case. The average
effects of R and P loci on z, are assumed to be equal,

s0 a, = Pa, = Ra,. For an explanation of the plot, see
Figure 5.

for the additive case. Only the relative mu-
tation rates, and the ratio R/a, will influence
(31), so the range of possible ZCA values
emerging from the multiplicative selection
case is much narrower than that for the ad-
ditive. Otherwise, the two selection func-
tions result in surprisingly similar ZCA val-
ues.

As in the additive case, a Taylor approx-
imation was used to evaluate equation (28)
when the exponents j and k are not both
equal to 1. To do this I assume that R and
P have symmetrical distributions, R > 1,
and R > j + k, so that only terms to third
order make large contributions. The result-
ing expression is shown in Appendix C. The
value of P that maximized (A13) was found
numerically. This equilibrium value of P
depends primarily on the exponents j and
k. When j = k, P = 0.5, but when j and k
are very unequal, P approaches 1 or 0. The
three allele model is built on the assumption
of symmetry of genetic effects and the phe-
notypic distribution of P, which cannot ap-
ply in such cases without a modification,
such as a scale transformation. Figure 8
presents the ZCA surface as a function of j
and k, avoiding combinations where P is
within two phenotypic standard deviations
of 1 or 0. The apparent asymmetry is an
artifact of determining k relative to j. Nu-
merical results not shown suggest that there
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are no interactions between other parame-
ters and j and k.

More Characters

When more characters are studied, it be-
comes increasingly difficult to make predic-
tions about covariances. An intuitively rea-
sonable expectation for genetic covariances
among three or more characters is that char-
acters that share more functional architec-
ture should have larger genetic correlations.
In Figure 9, I show an architecture for three
measured characters, z,, z,, and z;, and three
unmeasured ones, R, P,, and P,. The naive
expectation is the z, and z; will covary more
positively than either will with z,. The ex-
pected covariances G),, G3, and G,; are
easily obtained as the covariances of prod-
ucts of the unmeasured variables. For the
sorts of parameter values used above, prod-
ucts of genetic variances may be ignored,

G, = (1 = P) (1 = P)P,Gr — R*Gp)
G; = {’2((1 __Pl)I_)lGR - ISZGH)
Gy = 2(_1 - P)(PiGr + R*Gp)
— PIR’Gp, (32)
Gy > Gy if

Rz(Gpl(z_Pz_ - P%) __ P%GP%)
— GgrP\Py(1 — P,(2 — P,)) > 0. (33)

This condition is readily violated if Gy is
large and allocation proportions are near
0.5, as in the two character cases above. In
addition, it will also be violated if Gp, is
large relative to Gp,. For example, if P, =
P, = 0.5, (33) cannot be satisfied if G, >
3Gp,, regardless of the size of the acquisition
variance. This could occur if the number of
loci affecting P, is larger than that affecting
P,, or if stabilizing selection is stronger on
P, than P,.

DiscussioNn

In this model, both the signs and relative
magnitudes of equilibrium additive covari-
ances among resource-limited fitness cor-
relates depend on the underlying functional
architecture of the loci that determine the
phenotype. For the simple architecture con-
sidered, a principal determinant of genetic
covariance is the relative numbers of loci
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FiG. 8. Log(ZCA) as a function of exponents j and
k in the multiplicative fitness case. If j and k are very
unequal, P will be too close to the boundaries 1 or 0
for the approximation used to hold. Therefore, k is
varied relative to j. For an explanation of the plot, see
Figure 5.

0.3

affecting acquisition and allocation of re-
sources. If the number of loci involved in
acquiring resources is large enough, relative
to those allocating resources, the equilibri-
um additive genetic covariance may be pos-
itive. Another important factor influencing
genetic covariance of fitness correlates is the
relative strength of selection on acquisition
and allocation. If optimal allocation is
strongly selected for, as in the upper part of
Figure 6, or additional acquisition is weakly
selected, as in left part of Figure 7, com-
parable numbers of allocation and acqui-
sition loci may generate covariances near 0.

The influence of functional architecture
adds an ultimate element of uncertainty to
the interpretation of genetic covariances.
While poor experimental design will lead to
estimates of genetic covariances that do not
apply to the population of interest (Intro-
duction), it is quite possible that covari-
ances will not match the sign predicted by
an optimality model, even at genetic equi-
librium. It is not appropriate to assume that
all experiments that do not confirm our
crude predictions are therefore flawed. Sim-
ilar conclusions may be drawn from con-
ceptually rather different models that focus
on the input of mutational covariance as
their primary parameter (Clark, 1987a;
Charlesworth, 1990), as well as the ap-
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FI1G. 9. A functional architecture based on acqui-
sition and allocation leading to three measured phe-
notypes.

proach taken by Wagner (1989). The chief
advantage of the approach used here is that
it provides a framework for the discussion
of the importance of mutation in shaping
genetic variance-covariance matrices.

The assumption that the pleiotropic ef-
fects of each locus are fixed makes func-
tional sense, as genetic effects are expressed
through the molecules they code for, and
each such molecule will have a limited range
of biological effects (cf. Wagner, 1989). Ex-
amination of the known phenotypic con-
sequences of mutations at well studied loci
(e.g., Lindsley and Grell, 1968) suggests that
this view is substantially correct. Barton and
Turelli (1989) have argued that the range of
pleiotropic effects of each allele at a locus is
not so limited. However, the counterex-
amples cited are primarily of differences in
the ranking of effects on phenotypes, of
dominance, or of threshold effects (Caspari,
1952; Wright, 1968 pp. 60-63). Neither kind
of example argues that pleiotropic effects are
so unpredictable that loci could not usefully
be categorized. Some developmentally im-
portant loci in Drosophila produce alleles
that affect different sets of phenotypes. In
many such cases, molecular analysis shows
that such loci consist of regions within which
pleiotropic effects are predictable (e.g.,
Bender et al., 1983). Exceptions exist, such
as some of the alleles at the Notch locus
(Artavanis-Tsakonas, 1988), but they are not
common.

A second basic assumption is that loci can
be neatly dichotomized into those involved
in acquisition and allocation. This is un-
realistic in any strict sense, as one can readi-
ly imagine, for example, that past allocation
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would influence future acquisition, and vice
versa. I have chosen to restrict my attention
to the simplest case because of its heuristic
value, and because there is no empirical
guide to which sorts of acquisition-alloca-
tion pleiotropy should be added to the mod-
el. Selection at loci with pleiotropic effects
on acquisition and allocation is straight-
forward to determine (see Eq. 22 and Ap-
pendices), given the character means and
phenotypic covariances. Some simple con-
siderations do suggest that acquisition-al-
location pleiotropy could either decrease or
increase the likelihood of observing positive
covariance. For example, if allocation loci
are assumed to affect acquisition as well,
their allele frequencies would tend to be
dominated by the strong selection on ac-
quisition effects, and far less allocation vari-
ance would be maintained with pleiotropy
than without. Conversely, introducing al-
location effects at acquisition loci will change
allele frequencies very little, and thus in-
crease allocation variance. In addition, pre-
diction of equilibrium means rapidly be-
comes unwieldy when there are many
patterns of genetic effects. For example, if
mutations that increase the amount of re-
source acquired also directionally affect al-
location, mean allocation may be driven far
from the selected optimum. This might gen-
erate a nonlinear constraint boundary.
While the assumption of no acquisition-
allocation pleiotropy may not be realistic,
it may be closer to reality than the converse
assumption that all loci potentially affect all
characters. For example, a holometabolous
insect spends its time as a larva acquiring
resources that may very largely determine
its fitness as an adult. The allocation of those
resources to the construction of adult mor-
phology or energy reserves during the pupal
period may determine tradeoffs between
such characters as fecundity and adult lon-
gevity. Since the nature and timing of the
metabolic and developmental tasks in-
volved is quite different, it seems reasonable
that the loci involved may largely be dis-
tinct. On the other hand, comparison of the
results of Charlesworth (1990) for param-
eters that result in similar input of new mu-
tational variance suggest that the conclu-
sions would be the same without the
assumption of no acquisition-allocation
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pleiotropy. The question, in either case, is
whether mutations contributing positive
covariance are common enough to explain
observations of positive covariance among
fitness correlates.

In the framework of this model, there
clearly must be more acquisition loci than
allocation loci before one expects to see pos-
itive covariance due to mutation-selection
balance at equilibrium. Is it reasonable to
expect that there might be 10 or 100 ac-
quisition loci for each allocation locus? I
believe such high ratios may sometimes oc-
cur. It is first of all clear that very large
numbers of loci influence fitness correlates
as the genomic mutation rate for such char-
acters is very high (Simmons and Crow,
1977; Crow and Simmons, 1983; Kon-
drashov, 1988). This makes sense in that
every locus in the genome must be capable
of affecting fitness, if only by its inactiva-
tion. The total gene number in multicellular
organisms ranges from about 10* for some
plants and invertebrates to 105 in mammals
(Cavalier-Smith, 1985), which leaves room
for both substantial numbers of allocation
loci and large ratios of acquisition to allo-
cation loci.

Two lines of reasoning suggest that a sub-
stantial majority of the loci influencing fit-
ness might cause positive covariance be-
tween fitness correlates. First, virtually every
aspect of an organism, from behavior to
biochemistry may affect the rate that it ac-
quires resources from its environment. On
the other hand, it is possible to imagine that
allocation takes place through rather simple
genetic mechanisms. For example, the hy-
pothetical holometabolous insect discussed
earlier has the evolutionary choice of ma-
turing earlier with less resources, or later
with more. Allocation loci in this case would
be those that control the timing of meta-
morphosis, such as those influencing juve-
nile hormone titer. These are probably few
in number compared to the behavioral, de-
velopmental, and metabolic loci that affect
the rate and efficiency of larval feeding.

The second argument springs from the
field of metabolic control theory (Kacser and
Porteous, 1987; Westerhoff and Kell, 1987;
Fell and Sauro, 1985), which seeks to pre-
dict the ‘flux,” or rate at which a product is
produced, through simple biochemical
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pathways. In pathways which are closed,
with no input or loss of intermediate prod-
ucts, most loci will have only very tiny ad-
ditive effects on flux, or large recessive ones
(Kacser and Burns, 1981; Keightley and
Kacser, 1987; Keightley, 1989). This occurs
because substrate that is underutilized due
to a deleterious mutation at a particular en-
zymatic step remains in the system. Even-
tually the increased abundance of the sub-
strate drives the affected reaction forward
enough to nearly compensate for the mu-
tation. At most one of the enzyme loci in a
linear pathway can have effects on the flux
proportional to the allelic effects on enzyme
activity. In such a case, all the other loci in
that pathway will produce mutants that are
completely recessive in their effects on flux
(Fell and Sauro, 1985). It seems likely that
pathways through which resources are al-
located are likely to conform to these as-
sumptions. Therefore, even if many loci are
in such pathways, only a small proportion
are likely to be capable of producing sub-
stantial additive genetic variance in allo-
cation. On the other hand, acquisition is not
likely to proceed in closed pathways. For
example, there are potentially substantial
losses of resource at every step in a preda-
tor’s handling and absorption of its prey.
Inefficiency at each such step would be in-
dependent in its effect. Prey that elude cap-
ture now will not generally be easier to cap-
ture in the future. Nutrients not absorbed
during digestion are lost to the organism
permanently.

One simple prediction of a mutation-se-
lection balance model of positive correla-
tions is that the correlation of the effects of
new mutations on the observed phenotypes
should be very near 1. If mutations at each
allocation locus increase the variance of z
¢ times as much as mutation at an acqui-
sition locus, and mean allocation is about
1/2, the correlation due to new mutational
variance is

n, — cn,
1 R 34

Par-12 n + c n, (34)
For n,/n, larger than most ZCAs above, such
as the 50 to 100 values found when ¢ = 1,
this correlation will be very large. When
positive covariance is found in outbred
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equilibrium populations, p,, provides an in-
dication as to whether the mutation-selec-
tion balance model is relevant.

Such experiments have been performed
only four times for life-history characters,
with mixed results. Mukai and coworkers
(Mukai and Yamazaki, 1971; Yoshimaru
and Mukai, 1985) estimated the effects on
viability and development rate of both ho-
mozygous and heterozygous combinations
of chromosomes allowed to accumulate
mutations without selection for over 50
generations. In both studies, most correla-
tions were greater then 0.9, with a few as
low as 0.7. Yoshimaru and Mukai also found
the additive correlation in a natural popu-
lation to be positive, and not significantly
different from 0. The functional architecture
of this pair of characters may in fact be large
enough to explain this near O covariance.
On the other hand, Simmons et al. (1980),
also working with D. melanogaster chro-
mosomes, found that new mutants were not
correlated in their pleiotropic effects on vi-
ability and a measure of fitness including
only viability and male mating success.
These results are questionable because the
estimated variances of viability are incon-
sistent with the relative times that different
sets of chromosomes are allowed to accu-
mulate mutations. Chromosomes from cage
populations caused negative correlations
between the two phenotypes. It is possible
that the difference between these and Mu-
kai’s experiments reflects differences in
functional architecture of the pairs of traits
studied. Lynch (1985) estimated genetic
correlations for life-history traits among
eight lines of Daphnia allowed to accumu-
late mutations for 50 generations. Almost
all the genetic correlations that were signif-
icantly different from O were very large, of-
ten exceeding 1. However, for one pheno-
type, age at first reproduction, the expected
sign of the correlation is reversed, and it
also showed a few large positive correla-
tions. More experiments of this type are
clearly called for.

A second method for investigating the rel-
evance of the architectural approach to ge-
netic covariance is to attempt to directly
measure the fundamental variables acqui-
sition and allocation. In favorable material,
a limiting resource might be identified and
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studied in addition to the final phenotypes.
For example, in a plant, carbon resources
acquired and their ultimate use could be
assessed. The relative influence of mutation
and selection in shaping covariance might
then be more amenable to direct study.

I have assumed that genetic variance is
maintained by mutation-selection balance,
but it may not be an adequate explanation
for quantitative genetic variation in all cases
(Mukai, 1988; Turelli, 1988; Barton and
Turelli, 1989; Barton, 1990). Other nonex-
clusive hypotheses that could explain that
maintenance of genetic variance are bal-
ancing selection, genotype-environment in-
teractions, and migration-selection balance.
Some attention has recently been focussed
on marginal overdominance as a variance
maintaining force (Rose, 1982, 1985; Gil-
lespie, 1984; Takano et al., 1987; Gillespie
and Turelli, 1989). Particularly appealing in
the context of life history theory is Rose’s
(1982, 1985) application of classical mar-
ginal overdominance to loci analogous to
allocation loci in the present model. Such
polymorphisms could easily maintain large
amounts of negative covariance between fit-
ness correlates. However, the data do not
suggest that large negative genetic correla-
tions are particularly common (Introduc-
tion). The kinds of interactions that Rose
suggest are only one of many ways in which
balancing selection can occur. Two others
are genotype-environment interactions
(Takano et al., 1987; Gillespie and Turelli,
1989) and frequency dependent selection
(Asmussen and Basnayake, 1990). Both sorts
of balancing selection would be as likely to
arise in acquisition as in allocation loci, or
perhaps more likely, as acquisition pro-
cesses interact with the external environ-
ment. Balancing selection would tend to
make covariances unpredictable, as it can
generate very large genetic variances at only
a few loci. The applicability of balancing
selection models in general is questionable,
as prodigious efforts to demonstrate its ex-
istence have yielded embarassingly few de-
monstrable examples at specific loci (Le-
wontin, 1974; Simmons and Crow, 1977,
Mukai et al.,, 1982; Jinks, 1983; Houle,
1989).

A less extreme form of the argument used
by Gillespie and Turelli (1989) shows that
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genotype-environment interactions may
help to maintain genetic variance even if
they are not large enough to lead to balanc-
ing selection. These interactions can be tem-
poral, or spatial. In the latter case, migration
may supply substantial genetic variance to
local populations (Bulmer, 1980). In this
case, as in many models of balancing selec-
tion, these processes would be as likely to
operate on acquisition loci as allocation loci,
and would not necessarily tend to favor a
particular covariance pattern. Similarly, en-
vironmental changes may lead to bouts of
directional selection that will tend to in-
crease genetic variance at either sort of lo-
cus. While competing models for the main-
tenance of genetic variance may have
complex effects on covariance, there is no
a priori reason to suggest that they should
increase the likelihood of observing nega-
tive covariance between fitness correlates.

Comparisons among closely related pop-
ulations suggest that they have evolved dif-
ferences consistent with the existence of
tradeoffs between life-history characters
(Reznick, 1985; Partridge and Harvey,
1988). Such evolution takes place readily in
my model when the optimal allocation ratio
changes. In fact, since I assume that acqui-
sition and allocation are genetically uncor-
related, the sign of the genetic correlation
between the observed characters does not
affect the response to selection on allocation
or acquisition at all. This is an extreme ex-
ample of the fact that populations will not
be prevented from achieving new selective
optima unless G takes an extreme form (Via
and Lande, 1985; Zeng, 1988, 1989). How-
ever, acquisition is also free to evolve when
the optimal way to acquire resources
changes, which would tend to generate pos-
itive covariance among populations. Clear-
ly negative covariances are not a necessary
consequence of life-history constraints and
tradeoffs, either within or among popula-
tions.

This reasoning also applies to other kinds
of evolutionary constraints and tradeoffs.
Long-term constraints come about when no
new genetic variation arises with beneficial
effects on fitness, and does not require a lack
of genetic variance. The existence of trade-
offs strictly requires only the existence of a
few loci capable of generating them, and not
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that such loci dominate G. While genetic
variance-covariance matrices are certainly
shaped by selection, they also reflect un-
derlying functional architecture. Their rel-
ative influence can best be addressed by
studying functional architecture itself.

At present, one crude probe of functional
architecture that is widely available is the
covariance of new mutants as outlined
above, and their effects on character means.
In the long term, analyses of the functions
and relationships of loci that influence
quantitative characters may provide us a
picture of the functional architecture of well-
studied organisms. One advantage of an ar-
chitectural approach to quantitative genet-
ics is that functional architecture is likely to
evolve very slowly. The functional archi-
tectures of model organisms such as Ara-
bidopsis, Mus and Drosophila, are likely to
be typical of their taxonomic groups, while
the sorts of selection pressures even closely
related species currently experience may be
extremely different.
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APPENDIX A

In this Appendix, I derive the mean fitness of a genotype i with effects », and p, when the fitness function is

W(R, P)=R exp[

T (A1)

—w—oﬂ‘

I assume that F(R, P) is bivariate normal, with phenotypic correlation p,. Then

R+ r,)exp[ 2w

—(P+p -

mﬂ

w-] [ (22VTaT AT — )

_<(R — R ®-Pp

T T3

m—@w—ﬁ)

0, T.T,

dRdP, (A2)
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w -(R -
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where

and

R + @ - P))

(20 - 1)

dRdP, (A3)
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Then

27,

m(R +r +<1>(P—P))
T Lo 27Ty

exp[—n] dP, (A4)
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Terms of 5 in P can be collected
= 2
( p_ P D)o+ Pw2>

— (P + pl - }:’0)2 V;
2V, 2T WV, ’
where V, = T, + w2 Plugging 7 into Equation A4, and integrating,
T, _(P + pl - }:’o)2 wZ D (Po - pl)Tp + sz D

W, = _— — +r+ =~ P A

] exp[ 2V v R+ v (A5)
. _[_’-‘-IJI_Po2 w2 [ _ PO_(P+pI)
= exXp [(—'Z—VT——)] _I;: <.R +r + TRP(T)) . (A6)
APPENDIX B
In this Appendix, I derive the mean fitness of a genotype / when the fitness function is

W(R, P) = R¥P — P?). (A7)

As in Appendix A, I assume that F(R, P) is bivariate normal, with phenotypic correlation p,, Then,

W= f ) f ) (R + r)(P + p, — (P + p))F(R, P) dRdP (A8)

= J:: F(P)(P +p — P+ P:)Z) (TR(l - )+ (R + &P - }3))2 y
+ 2r(R + ®(P - 13))) dp “9)
= I: F(P)(P‘(“QZ) + P3(®(1 — 2p) — B) + PZ((I —2p)8 —a + p(l — pl)qu)

+ P((1 = 2p)a + p(1 = p)B) + p(1 — p)a) dP, (A10)

where
a=R+ry + Ty — Tee® + ®P@®P — 2(R + 1)),
and
B =28((R + r) — ®P).
Integrating gives the first four noncentral moments of P, and

W,= (3T3 + 6T,P* + P)(—%%) + BPT, + P°)@*(1 — 2p) — B)
+ (Tp + P = 2p)B — a + p(1 — p)®?) + P((1 = 2p)o + p(1 — p)B) + p(1 — p)a. (Al1)

Finally, this simplifies to
W,=(R+ry+ TP +p, — (P+p)P—Tp) + Teo2R + r)(1 — 2(P + p)) — Tre). (A12)

APPENDIX C
For a genotype i, with effects r, and p,, the Taylor approximation to third degree of equation (28) is

s ~ r A
W, = RPXL = PY(1+ 1D+ A+ (7 + T 5 + (o, + TodATy + @2 + T3

A

r AL A
+ 7+ 3r,TR)% +@Tn+ 20 Ta) S5+ (T + 20,00 52 + 02 + 30TD ), (A1)

where / = j + k, and
I
P = ——
TTU-HWR
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This approximation can only be simplified if further restrictions are imposed on j and k.
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