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Comparative quantitative genetics:
evolution of the G matrix

Scott J. Steppan, Patrick C. Phillips and David Houle

Quantitative genetics provides one of the most promising frameworks with
which to unify the fields of macroevolution and microevolution. The genetic
variance—covariance matrix (G) is crucial to quantitative genetic predictions
about macroevolution. In spite of years of study, we still know little about how
G evolves. Recent studies have been applying an increasingly phylogenetic
perspective and more sophisticated statistical techniques to address G matrix
evolution. We propose that a new field, comparative quantitative genetics, has
emerged. Here we summarize what is known about several key questions in
the field and compare the strengths and weaknesses of the many statistical
and conceptual approaches now being employed. Past studies have made it
clear that the key question is no longer whether G evolves but rather how fast
and in what manner. We highlight the most promising future directions for this

emerging field.
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Organisms are complex systems comprising
interacting characters underlain by shared functional,
developmental and genetic processes. Within
quantitative genetics (the study of inheritance at the
phenotypic level), these relationships are summarized
in the additive GENETIC VARIANCE—COVARIANCE MATRIX G
(see Glossary). The usefulness of the quantitative
genetic approach to long-term evolution depends,
to a large extent, on whether G remains constant or
evolves in a predictable manner. For this reason,
quantitative geneticists have increasingly turned
their attention to the evolution of G. Together with
natural selection (the ADAPTIVE LANDSCAPE) it
determines the direction and rate of evolution.

The most productive approach to the study of
evolutionary change is dictated by the importance
of genetic details in determining the nature of that
change. In some cases, genetics might be irrelevant,
and evolution might be best approached as an
optimization problem [1]. In other cases, only
genetic mechanisms might be worth studying [2].
Quantitative genetics is useful for intermediate cases
where genetics matters, but where genetic details do
not. The basic quantitative genetic model (Box 1)
captures the influence of genetics through G and
indirectly through the selection gradient, which
depends on the pHENOTYPIC MATRIX P [3]. If G is stable,
it can be used to predict the evolutionary potential of a
population or to reconstruct the form of selection that
has led to divergence among populations [4] (Box 1).
Quantitative genetic parameters can also be
integrated with phylogenetic information within
alikelihood framework to test more precisely for
adaptation [5]. If stochastic events, such as genetic

drift, fluctuating adaptive landscapes and rare
mutations, are more important, then quantitative
genetics might not be informative and
macroevolution might be decoupled from
microevolution. Resolution of this issue is crucial
to evolutionary biology as a whole.

Until recently, the usefulness of a quantitative
genetic approach to evolution has been asserted or
rejected mostly on faith. Neither the high-quality data
nor the analytical tools to evaluate possible changes
in G have been available. Here, we highlight recent
advances that are beginning to allow informative
comparisons of G matrices and discuss the questions of
if, how, how fast and why G might evolve. We suggest
that a new field of study has emerged, COMPARATIVE
QUANTITATIVE GENETICS, which has built upon traditional
comparisons of genetic variances and covariances but
which is distinguished by incorporating phylogenetic
information using the comparative method and an
emphasis on covariation among traits.

Does G evolve?

Yes. With some important statistical caveats in
mind (Box 2), there are clearly some cases where

G matrices, or some of their elements, are unequal
[3,6-8]. The significant changes in G sometimes
detected by rather small studies imply that real
differences are frequently large. Laboratory studies
have demonstrated significant divergence at the
population level given strong selection [3,9] and/or
drift [10,11]. Although matrix correlations do not test
the hypothesis of inequality, nonsignificant matrix
correlations can be interpreted as evidence for
departures from equality, if one has confidence in the
precision of the estimates. Although comparable
studies at multiple systematic levels are few,
comparisons among rodent genera [12,13] have shown
nonsignificant correlations, whereas comparisons
among and within species were significantly
correlated [14] (see reviews in [7,8,15]). Comparisons
within species usually show significant correlation
or insignificant differences [7,8,15]. Comparisons of
P matrices find significant differences even more
frequently [16-19]. In summary, one cannot assume
that G is constant [6,20].

How do G matrices differ?

Although G can change, understanding those aspects
of G that change could allow many informative
predictions about evolution to be made. For example,
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Box 1. Introduction to the G matrix and quantitative genetics

Quantitative genetics provides a means for predicting

the evolution of suites of traits given information about
directional selection and the degree of resemblance among
relatives. When only one character is selected, say z, the
response to selection is predicted by the familiar breeder’s
equation (Eqnl),

17,=(G,/P)s, [Eqn 1]

where z, is the population mean; G, isthe additive genetic
variance in trait 1 and sums up the degree of resemblance
between relatives; P, is the phenotypic variance, and S, is
the covariance between z, and fitness [a]. Alternatively,
this equation can be represented as (Eqn l1),

Az, =G1(S1/P1) =Gb, [Eqn l]

where b, is the slope of the regression of fitness on trait 1.
If z, is genetically correlated with any other traits, then the
change in frequencies of genotypes affecting z, will also
affect these other traits. This indirect response of another
trait, say z,, to selection on z, is Az, = G,,b,, where G,,is
the additive genetic covariance between z, and z,.

In general, directional selection can affect more than
one trait, so our focal trait is affected both directly by
selection on that trait and by the selection on all other traits
correlated with it. The resultis a complicated bookkeeping
problem solved by means of matrix algebra. The vector of
responses to selection is (Eqn Il

AZ=GP'S [Eqn l1]

where G is the additive genetic variance—-covariance matrix,
P is the phenotypic variance—covariance matrix, and S is
the vector of covariances between traits and fitness.
Variance-covariance matrices are square symmetric
matrices with as many rows and columns as there are traits
under study. The diagonal entries are the variances, and the
off-diagonal elements give the covariances between traits.
Equivalently (Eqn IV),

P'S=p [Egn IV]

where Bis the vector of partial regression coefficients of
fitness on the traits. The elements of Bgive the relationship
of each trait to fitness, holding the values of other traits
constant. Lande [b,c] extended this multivariate approach
and was the first to apply it to evolutionary problems.

G is useful for predicting which kinds of evolutionary
changes are most readily accomplished. G deflects the
response to selection toward those trait combinations that
have more genetic variation. G will therefore affect the
amount of time required to reach a novel state and could
determine which state the population will ultimately
achieve [b,d] (Fig. I). Persistent absence of additive
variation for particular combinations of phenotypes would
suggest that evolution in certain directions in phenotype
space is not possible [b,e]. If G and the adaptive landscape
are indeed constant over long periods, G might be used
to predict the evolutionary potential of a population or to
reconstruct the form of selection that has led to divergence
among populations.
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Fig. I. Genetic constraints because of G on adaptation. (a) A
population in purple sits in an adaptive landscape with two local
optima or peaks (red) and a valley (blue). The nearer peak on the left
has higher fitness (as indicated by the magenta color) than does the
peak on the right. The population has moderate genetic variation for
both traits and no correlation or covariance between traits, as
indicated by the circular dispersion. The selective gradient (B) is a
measure of the strength of selection and in this graphical metaphor
is equal to the slope of the landscape. Populations will evolve uphill
owing to selection. In (a) this population would evolve directly up
the fitness peak, which is the global optimum for this region of
character space, as shown by the arrow. (b) In this example, the
only difference is the strong covariation between traits Z, and Z,
(e.g. Z,, length of forelimbs; Z,, length of hind limbs), producing the
acute ellipse. The G matrix describes the size and shape of the
ellipse. Both traits have similar amounts of variation to the example
in Fig. la, butin this example, there is almost no covariation in the
direction that selection would move the population. Instead, the
population is likely to move across the slope in the direction of
greatest variation (arrow) and could cross the shallow saddle, after
which selection would be in the same direction as the main axis of
variation. It would then evolve quickly up to the local optimum on
the right. This example illustrates that even complete knowledge of
the selective forces might not allow one to predict an evolutionary
outcome without knowledge of G.



Box 2. Comparing matrices: power and model dependence
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A majorissue for any comparative quantitative genetic study is
statistical power. The genetic variance components that comprise G,
the genetic variance-covariance matrix, have large sampling errors [a],
and so measurements of hundreds of families are usually necessary to
provide reasonable power for comparisons. By contrast, sample size
for P, the phenotypic variance—-covariance matrix, is the number of
individuals, where sample size for G depends on the number of
families, usually far less than the number of individuals. Estimating

G normally requires controlled breeding programs; P does not.
Because most G matrix studies use fewer families, studies are biased
towards confirming the null hypothesis. Interpretation is, however,
complicated by the use of diametrically opposed null hypotheses,
common among older methods of comparing G matrices. Matrix
correlations test the null hypothesis of no similarity between matrices
[b], whereas maximume-likelihood [c] or element-by-element
comparisons test the null hypothesis that matrices or a subset of their
elements are equal. Few studies have adequately addressed limitations
of power when trying to compare covariances [d,e], and the power of
more versatile methods, such as common principal components
analysis (CPCA), is currently unknown [f].

Findings of matrix similarity are also highly dependent on the model
being tested. Principal components analysis (PCA), the parent technique
on which CPCA depends, transforms the data from the space of the
original variables, which are correlated, to a set of vectors that are
uncorrelated. It captures all of the variation in the original data, whilst
concentrating the variation explained in a few vectors. The forte of PCA is
therefore summarizing high-dimensional data with fewer, uncorrelated
variables. Flury developed CPCA to summarize multigroup data in as few
vectors as possible [g—-j], but evolutionary biologists often have the loftier
goal of diagnosing and understanding the differences between matrices,
and the method has significant shortcomings for this purpose [f].

The defaultimplementation of CPCA orders vectors to be compared
by the amount of variance explained. If these first vectors differ,
matrices are declared unrelated. It is biologically plausible that
populations might differ in the first vector, often size in morphological
data sets, but have similarities in other aspects of variation. CPC vectors
can be considered in any order, and the Phillips software [k] allows such
reordering. PCA also constrains all of the vectors to be orthogonal

absence of variation for some phenotypic

(uncorrelated), so the vectors with large amounts of variation constrain
the directions of all other vectors. Flury [h,I] proposed a more general
approach, called common space analysis, which, in principle, allows any
set of vectors to be compared. We know of no other implementations of
common space analysis. Alternative methods of finding hidden
similarities in matrix structure are needed.
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many of the principal components-based vectors

combinations would predict that those phenotypic
combinations cannot evolve [21]. Conversely, those
combinations with the most genetic variation might
be more likely to evolve [22]. Roff[15] has focused
attention on whether matrices remain linearly
related to each other, because an expectation is that,
if drift is the only force causing differences in G, all
elements of G would tend to increase or decrease in
concert. Several statistical techniques that allow
more subtle questions about G to be addressed have
recently been implemented (Table 1). We focus our
discussion on common principal component analysis
(CPCA), because of its recent surge in popularity.

Maximum-likelihood methods [23] can be
used to test a wide variety of hypotheses about
variance—component matrices as well as about
equality. With a well-estimated data set, this method
permits statistically precise statements about which
parts of the matrix differ and by how much, usually
through the separate analysis of submatrices. This
approach deserves wider application.

CPCA, and the subsequent use of the Flury
hierarchy of hypothesis tests [24], has recently been
adapted for use with variance—component matrices,
such as G [25]. The Flury hierarchy determines how
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differ among matrices. The method can thus
discriminate matrices with a wide variety of levels of
shared structure, including equality (not significantly
different), proportionality (unequal, but the
hypothesis of proportional eigenvalues is not
rejected), CPC, partial CPC, and unrelated (no shared
structure; see Box 3 and previous reviews [16,25]).
Publicly available software [26,27] has now made
CPCA the method of choice for comparing P matrices
[19] and G matrices [8].

Any conclusions regarding matrix similarity
depend strongly on the model being tested (Box 2).
For all its advantages, the CPCA method makes
sequential comparisons of orthogonal vectors. A
finding that two matrices are ‘unrelated’in a CPCA
does not mean that there are no similarities, but
rather that all of the tested null hypotheses fit less
well than do the alternative hypothesis of no
similarity. For example, Steppan’s [16] CPCA of
P matrices never found common structure among leaf-
eared mice Phyllotis spp. By contrast, sample-size-
adjusted matrix correlations averaged 0.93 among
species, indicating that matrices were still very
similar. Studies of P typically show a complete loss of
CPC structure (e.g. dropping from proportional to



Table 1. Methods for matrix comparison
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Method Approach Strengths Weaknesses Refs®
Element x element t-test Detailed, isolates specific elements  No synthesis, ignores nonindependence of elements [6,55]
Matrix correlation  Correlation, Overall measure of similarity Does not distinguish among many types of [12-14,54,
permutation tests difference; ignores proportional changes; pairwise  56]
comparisons only; easily influenced by a few
shared values; improper hypothesis-testing
framework
Matrix regression  Regression Estimates of proportionality Can be strongly influenced by outliers (especially in  [4,15]
covariance matrices); improper hypothesis-testing
framework
Disparity Overall measure of difference, most No clear metric; no integral statistical model [33]
easily applied to phylogenetic data
Maximum likelihood Likelihood Statistical power, applicable at Pairwise comparisons only, does not compare [3,6,23,57]
several levels matrix structure
CPCA Principal components Statistical power, hierarchy of Orthogonality of components might not reflect [8,11,16-19,
models; multiple comparisons biology; does not incorporate nonindependence 24,25,
owing to phylogeny 29-31,40]
CPC for dependent Principal components Based on CPC method; takes extra Same limitations as CPC approach, with even more [58,59]
vectors covariance patterns (e.g. growth, restrictions on the pattern of shared relationships
environment) into account across covariance sets; has yet to be extended for
genetic covariance components
Matrix pattern Correlation Nonparametric model of matrix Shares all of the problems of matrix correlation; [60]
structure derived from functional unclear how to compare different models
and/or developmental models
Confirmatory factor Factor analysis; linear Tests explicit structural models that Not well developed for comparative analyses; has [42]

analysis models

can be biologically motivated;
allows hypothesis testing of
different models

yet to be extended to genetic covariance
components

*Please note that the references are examples and are not necessarily comprehensive.

unrelated) with more inclusive clades, rather than a
sequential loss of the smaller EicENvECTORS. That is,
PC1 often differs among very similar matrices, leading
CPCA to declare them ‘unrelated’. The development

of more general models of similarity is needed

(Table 1). An alternative approach is to explore the
dimensionality of G (Box 4), which might be able to
detect conservation of underlying structure that the
CPCA model might miss.

How fast do G matrices change?

This now appears to be the crucial question given

the observation that G can evolve. The diversity of
methods used in published studies makes comparison
of their results difficult. Comparisons among closely
related populations most frequently show no
significant differences [7]. Considering P as well as

G in the increasing number of CPCA studies (only
three sets of studies [8,25,28,29] have applied CPCA
to G), findings have ranged from proportionality
[19,29] to no shared structure [18,30], to intermediate
conditions with several CPCs[11,16,18,31]. In some
cases, the degree of shared CPC structure depends
strongly on the method of data standardization [32].
Above the species level, most studies [7] find
significant differences in G. In addition, no published
study (of G or P) among subspecies or at more
inclusive taxonomic levels has accepted shared
structure at more than the first two to three
eigenvectors [16,17,19,28]. Thus, G or P are usually
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not significantly different among phenotypically
similar populations, but statistically significant
differences are the norm among phenotypically
divergent populations (e.g. subspecies and species
[33]). Comprehensive multitaxon studies are needed
to confirm these tentative conclusions about the rates
of G matrix evolution.

The rate of G matrix evolution is best determined
through the comparative approach. When characters
evolve slowly relative to cladogenesis, the COMPARATIVE
METHOD is needed to account for phylogeny (to avoid
correlations among observations [34]) —in this case
matrices — and to estimate more accurately the
direction and rate of evolution. Just as several
methods can be used to compare two matrices, there
are several approaches to structuring comparative
analyses: single-pair comparisons, hierarchical
multigroup comparison and ancestral reconstruction.

All but one [14] study of G have compared just
two taxa . Such comparisons contain no phylogenetic
information and therefore cannot determine direction
of change.

A second approach is the hierarchical application
of matrix-comparison methods, particularly those
that can analyse multiple matrices, such as CPCA.

In CPCA, for example, all members of a clade are
analysed together for shared structure, and the
analysis is repeated for all clades [16]. Another
application is to conduct all pairwise comparisons
among members of a clade, taxon, or taxonomic
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category, [16] and partition the comparisons among
categories or ranks. However, this incorporates
minimal phylogenetic information and the degrees
of freedom must be reduced to reflect the multiple
comparisons. Interpretation of hierarchical analyses
becomes more difficult as the number of lineages
increases (Box 3).

The third and potentially most powerful method is
ancestral reconstruction, which allows change to be
partitioned among branches of a phylogeny [33]

(Box 3). Once ancestral matrices are estimated, any
of the matrix-comparison methods (Table 1) can be
employed. Unfortunately, significant error can also
arise in estimating ancestors [35], and that problem is
likely to be exacerbated with correlated multivariate
data. Uncertainty can be accommodated in a likelihood
or bayesian framework [36]. In addition, although
comparative studies of individual characters can
sometimes verify ancestral conditions from fossils,
such verification will be difficult for variances, which
are properties of populations. G will almost always be
impossible to measure for ancestors (but see [37]), but
P can sometimes be estimated. The most commonly
used application of this general approach, independent
contrasts [34], is unlikely to be appropriate to the
questions asked by quantitative geneticists, because
it tests evolutionary correlations over time rather
than decomposing the nature of changes. Maximum
likelihood methods, already applied to univariate
data [35], can be modified for correlated multivariate
data, although the errors involved in those estimates
can be very high for biologically interesting features
that vary significantly.

Why do G matrices change?

Given the many evolutionary forces that are expected
to buffet G, the observed differences in G matrix
structure are not surprising. Mutation, selection,
genetic drift and migration are all expected to affect G
[20,38]. A more productive focus might therefore be on
cases in which G might be expected to retain shared
structure over time. Genetic drift provides an obvious
starting point, because drift in a population of
reduced effective size is expected to cause a
proportional shrinking of all elements in G. This
expectation has been proposed by Roff as a way to
distinguish the effects of drift and selection [15]:
proportional changes in G matrix structure are
ascribed to drift and nonproportional changes to
selection. Although appealing, this dichotomy has

a flaw. Although proportionality is the theoretical
expectation for drift, a great deal of variation around
this expectation is likely. A large study on the effects
of drift on wing morphology in Drosophila has
demonstrated the extent of this variation [11]. Given
enough time, any pattern of divergence among

G matrices would probably be compatible with the
hypothesis of drift. More generally, matrices may
diverge by drift even when the effective sizes of the
populations are equal. We note that CPCA and
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Box 3. Evolution of matrices

Figure lillustrates the hierarchy of models in common
principal components analysis (CPCA). Compared to the
root ancestor A, ancestor C and descendants 1,2 and 3
are unequal but proportional. The eigenvectors
(orientation of axes) are the same, whereas the
eigenvalues (variances along each axis) all differ by a
scalar amount. Descendant 5 shares the eigenvectors
with ancestor A, but the eigenvalues for the two axes

do not differ by the same amount. Thus, they share
acommon principal component (CPC) structure
(proportionality is a special case of CPC). Descendant 4
differs by both orientation and relative variances and
therefore for these two dimensions, shares no common
structure with A (unrelated). If, however they did share
other axes for dimensions not plotted here, then
descendant 4 and ancestor A would share partial CPC
(PCPC). Thus, several levels in the hierarchy are portrayed
by taxa in reference to the root ancestor A; equality (B),
proportionality (C, 1-3), CPC (5) and unrelated (4). Further
discussion of the CPC hierarchy can be found in [a,b].

Proportional

Unrelated

Change in eigenvectors —— 4

5
Change in eigenvalues —— @
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Fig. I. Hypothetical evolution of genetic variance—covariance
matrices on a phylogeny. Text below branches summarizes changes
along a lineage (branch). Length of each branch is proportional to the
magnitude of change in covariance structure as estimated by, for
example, matrix disparity (except for the branch from Ato B,

which should have zero length but is expanded for visual clarity).
Ancestors A, B, and C and descendents 1, 2, and 3 all share
proportional matrices. The total variation among them has changed,
but the pattern of covariation has not. Text above the nodes
indicates degree of shared principal component structure expected
to be revealed by CPCA given the changes along the branches.
Ancestral matrices are shown here but cannot be observed directly
in most real groups. Estimation of ancestral matrices, like that of any
character, can be difficult under bias or lineage variation in rates [c].
For example, the ancestor associated with arbitrary CPC model (B)
would not be estimated accurately; the information from the highly
divergent descendant would skew the estimate. Also, although
three of four extant taxa in the clade share proportionality with the
ancestor, CPCA would probably detect no shared structure among
the four because of the one divergent taxon, 4.
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Box 4. Dimensionality of G

An alternative perspective on the role of the genetic variance-covariance matrix, G,
as an evolutionary constraint is to examine its dimensionality. The data from a
quantitative genetic study exist in a space with axes defined by each traitin the
study - if many traits are studied, the phenotype space has many dimensions. If
one could plot all the breeding values from a study, they might fall in a subspace
of this phenotype space. For three traits, phenotype space has a dimensionality of
three, but we might find that all the points fall on a plane, so the data reside in a

2D space. One would then predict that evolution would be restricted to the plane.
A matrix in which the dimensionality of the data is lower than the dimensionality
of the phenotype is called a singular matrix.

CPC provides one framework to explore dimensionality, but Kirkpatrick et al. [a]
proposed and implemented several approaches to estimate explicitly the
dimensionality of genetic variation. Their techniques were developed for the more
complex case where one is interested in genetic variation in a biological function, such
as a growth trajectory, but they could easily be applied to the typical point estimates of
genetic parameters. Application of these techniques to data sets on growth in several
mammals suggests that only a few aspects of growth and form could be shown to be
genetically variable [b]. Kirkpatrick et al.’s techniques are mostly modifications of
more widely used techniques in multivariate analysis and might not represent optimal
solutions to this statistical problem. More research on this problem is needed.
Surprisingly little empirical attention has been paid to dimensionality of G, even
though itis frequently mentioned in the literature on constraints [c].
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Roff’s test differ in the definition of proportionality;
elements related by a scalar multiplier versus linear

regression constrained to pass through the origin as a

predictor of elements, respectively. Much more work

is needed on the nature of the variance in G generated

by drift and on identifying the timescales that are
actually relevant for divergence, which are especially

important for providing a meaningful null hypothesis

against which comparative analyses can be tested.
Both selection and mutation can also maintain
similarity in G matrix structure under certain

circumstances [38]. In particular, when the pattern of

correlational selection matches the pattern of genetic
covariation, selection can maintain this association
[38]. Mutation might be the most important player
in this process. Long-term evolution of G might be
dominated by the pattern of pleiotropic mutation.
We know little about the nature of pleiotropic
mutations [39] (the M matrix) and certainly have

no observations of the relationship between M and
variation in G among populations. There have been
few studies of M, but induced mutations can cause
significant changes in M within species [28] and,
consequently, to G and P as well [40]. Ultimately, the
evolution of G will be guided by all of the forces that
affect the evolution of genetic variance itself. In this
case, a comparative approach might actually yield
new insights, because the multivariate nature of the
data allows one to ask how evolutionary forces are
influencing the covariance structure of an entire
suite of characters rather than trying to tease apart
multiple influences on a single trait.
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Comparative quantitative genetics should be
strongly influenced by, and potentially influence, the
emerging synthesis between functional developmental
genomics and studies of quantitative variation
(e.g.[41]). First, finer-scale genetic information,
especially regarding relationships among traits, is
needed for modeling long-term evolution of G. Second,
developmental models can be turned into statistical
models of covariance structure [42], which will be
needed for more meaningful comparisons among
matrices. Observations about the evolution of G might
provide insights into the forces affecting G and more
importantly into the underlying processes that
generate the covariance structure in the first place [43].
A comparative approach to G matrix evolution should
provide insights into macroevolutionary changes in
developmental structure.

Are G and P matrices similar?
The elements of P can be estimated much more
accurately than can those of G (Box 2), because
sampling errors scale with the inverse of the sample
size. This has led some researchers to suggest that the
P matrix will provide a more precise estimate of the
form of G [8,44,45] should they be proportional. The
P matrix is the sum of the G matrix and all other
sources of covariation, including genetic covariance
not contained in G, and environmental covariation
(E). Both genetic and nongenetic causes of covariance
can be structured by the functional architecture that
underlies the traits. If each hormone or regulatory
gene that helps to build a trait provides an
opportunity for both genetic and nongenetic effects to
occur, then genetic and nongenetic variances will be
correlated. This hypothesis can be tested by a direct
comparison of G and E [8]. Consistent with this
notion, genetic and phenotypic variances are very
highly correlated [46,47]. However, there are
many reasons why G and P might depart from
proportionality [48]. Comparisons of P have typically
found more divergence more frequently than have
comparisons of G, particularly within species.
Roff[44] tested the correlation of P and G by a
survey of the literature. He found that phenotypic
and genetic correlations were as correlated with
each other as could be expected if they only differed
because of sampling errors. The correspondence was
particularly good for morphological traits, which tend
to have high heritabilities (i.e. G is a large proportion
of P). Evolutionary forces, such as genetic drift,
might be expected to have different effects on G
and E, and thereby lead to divergence in P even if
these underlying matrices share similarities [11].
Particular phenotypic and genetic correlations
certainly differ significantly in some cases, but,
overall, there is surprisingly little empirical
evidence to reject the hypotheses that P and G are
proportional. Further testing of this conjecture is still
needed. Nearly all of the multitaxon comparisons to
date have involved P matrices [16,17,19,30,33,49]
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Adaptive landscape: a representation of the forces of natural selection where phenotypic trait
values are the X and Y coordinates and mean fitness is the elevation.

Comparative quantitative genetics: the comparative study of quantitative genetic parameters,
especially covariance matrices, across populations or species.

Comparative method: the application of phylogenetic information to cross-taxon comparisons.
CPCA: common principal components analysis; a generalization of principal components
analysis extended to multiple matrices.

Eigenvectors: latent or characteristic-roots of the variance-covariance matrix; they define the
orientation in multidimensional space of the orthogonal axes of maximum variation.

Genetic variance-covariance matrix: a symmetrical matrix that summarizes the additive genetic
contribution to the variances of and covariances between phenotypic traits. G matrix or

G covariance matrix are shorthand references.

Phenotypic matrix: phenotypic variance-covariance matrix, measured directly for a population
without partitioning out genetic and environmental contributions.
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rather than G matrices, presumably because of this
disparity in ease of estimation.

Conclusions and future directions

Clearly, G can evolve. The important questions now
are what parts of G evolve, what is the rate at which
G evolves, and how does that rate compare to the rate
of speciation, population differentiation and changes
in the adaptive landscape? Empirical and theoretical
studies are needed, as are new or improved analytical
methods. Empirical studies are needed to test
assumptions about the relationship between G and P,
for example. Perhaps the greatest need is for studies
that robustly estimate G for multiple taxa. The most
efficient approach might be to study taxa related to
those that have already been studied and to build on
earlier studies rather than duplicating them. With
thoughtful species selection, this approach can also be
used to expand morphological diversity. The clade
containing the well-studied mouse Mus and rat
Rattus, for example, includes many ecologically and
morphologically divergent species, including grazing
and earthworm specialists. Greater diversity can also
be achieved by including groups outside the model

organisms that have been the primary focus of past
studies. Developmental [50] and integrative [51]
approaches have great potential to provide explicit
hypotheses, which would provide stronger
theoretical and mechanistic frameworks for the
study of changes in G.

The greatest need on the analytical side is for
improved methods of matrix comparison that are
statistically powerful, biologically meaningful, robust
and that allow decomposition of the data. Although
CPCA has been widely adopted, we see it as an
interim method that will remain useful only
until more appropriate methods are developed.
Modifications of factor analytic methods, such as
confirmatory factor analysis [42] or common space
analysis [24], which relax the assumption of
orthogonality in PCA methods, are potential next
steps. Provided that G does not evolve quickly with
respect to the species and clades of interest to
evolutionary biologists, improved methods of
ancestral reconstruction for multivariate data should
be a focus of comparative studies. The field is also
hampered even in formulating scientific questions
by the difficulties of visualizing such complex data.
New visualization techniques are being developed
(e.g. [52]) and could be adapted to, or new ones
developed for, evolutionary studies.

Finally, we have only begun to ask some of the
most interesting questions. For example, is G
evolution decoupled from phenotypic evolution? That
appears to be the case with P matrices in Phyllotis
[16] and G within Clarkia dudleyana [53]. The
G matrix, treated as a character in its own right, can
be used to explore the evolution of developmental
systems and their role in phenotypic evolution.

A comparative quantitative genetic approach
should provide a natural linkage between studies
concentrating primarily on genetic details and those
focusing on long-term phenotypic outcomes.
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