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ABSTRACT

We have devel oped an automated image analysis system (WINGMACHINE) that enables rapid,
highly repeatable measurements of wingsin the family Drosophilidae. A simple suction device
allows video images to be taken of the wings of live flies. Low-level processing is used to find
the major intersections of the veins. High-level processing then optimizes the fit of ana priori
model of wing shape. Theresult is aB-spline approximation to the positions of al the veins and
the edges of the wing blade that utilizes 50 control points. The combination of handling, i maging,
analysis, and editing of the resulting data has been reduced to an average of about 1 minute per
wing. The repeatabilities of 12 vein interesections averaged 86% in a sample of flies of the
same species and sex. Comparison of 2400 wings of 24 Drosophilid species shows that wing
shape is quite conservative within the group, but that almost all taxa are diagnosably different
from one another. UPGMA clustering of the species suggests that wing shape retains some
phylogenetic structuring, athough some species have shapes very different from closely related
species. The WINGMACHINE system facilitates artificial selection experiments on complex
aspects of wing shape. We selected on an index which is afunction of 14 separate measurements
of each wing. After 14 generations, we achieved a 15 S.D. diffeence between up and down-
selected treatments. Our approach to image analysis may be applicable to a variety of biological
objects that can be represented as a framework of connected lines. The use of high-evel analysis
based on a priori information about shape deserves much wider application in morphometrics.
Keywords: [Morphometrics, image analysis; wing venation; Drosophilidae; morphol ogical

evolution.]



Many endeavorsin biology are limited by a combination of the number of specimens that can be
measured, and the amount of information that can be extracted from each one. Examplesinclude
biodiversity surveys (Weeks and Gaston, 1997), quantitative trat locus studies (Liu et al., 1996),
and artificial selection experiments (Weber and Diggins, 1990). Consequently, automated
methods for measuring the morphology of spedmens have long been desired by systematists
geneticists and evolutionary biologists.

Advances in technology and manufacturing of digitizing equipment and video cameras
have greatly increased the ease with which landmarks or outlinescan be recorded, especiallyin
organisms (or parts thereof) where the specimen is readily projected into two dimensions (Rohlf,
1993). In some cases, the combination of specimen handling, imaging and feature extraction can
be very rapid. Good examples include the extraction of outlines from high contrast objects such
asleaves (Jensenet a., 2002) or shells (Ferson et d., 1985). In many other cases internal detals
of a specimen are of primary interest, or the form of the organism precludes such asimple
approach. Sophisticated automated systems have been devised to extract such information
(Zhou et al., 1985), but none appear to have been widely used. Asaresult, in the vast majority of
morphometric studies, considerable effort on the part of the observer is till required in the
measurement of each specimen. Despite the fact that digitization is far quicker than manual
measurement and recording of data, it can still bethe limiting step in many morphometric
studies. T he preparati on of the specimen for measurement may aso be qui te time-consuming.

Here we report on our largely automated system for recovering the locations of wing
veins of fliesin the family Drosophilidae. Drosophilid wings are an unusually favorable subject

for automated image analysis. Thisisfirst because of the wealth of interesting and accessible



biological questions that can be addressed with their wings. The fundion of wingsfor flight is
clear, athough they also function as sense organs (Dickinson et a., 1997), and in courtship. The
nominate genus Drosophila includes the model organism D. melanogaster, as well as many other
species that are preadapted to laboratory aulture. Second, Drosophilid wings ae quite easy to
measure and handle because they are two-dimensiond, translucent and relatively sturdy, having
evolved to withstand large forces. As aresult of these factors, Drosophilid wings are widely used
for the study of the genetics of development, morphometrics and evolution (e.g (Cowley et al.,
1986; Garcia-Bellido and de Celis, 1992; Stark et al., 1999; Gilchrist et al., 2000; Klingenberg
and Zaklan, 2000).

The current standard approach to the measurement of Drosophila wingsis to mount
detached wings, then digitize the positions of vein intersections manually (e.g. Klingenberg and
Zaklan, 2000; Zimmerman et al., 2000). Weber (1988) devised a complex gpparatus to
immobilize the wing of alive, intact fly, and project itsimage onto a digitizing tablet, thereby
shortening handling time. Using this apparatus, Weber was able to perform a comprehensive
series of selection experiments that demonstrated that the wings of D. melanogaster could readily
evolve counter to the allometry within the species (Weber, 1990, 1992).

In this paper we describe the hardware and softwarethat together make up the automated
wing measurement system, which we call WINGMACHINE. The WINGMACHINE alowsthe
measurement of 100 pieces of information from the wing of aliving specimen in one every
minute. Our approach to feature extraction is unusual in basic biologicd applicationsin
employing an a priori model as part of feature extraction. We report the repeatability of the

resulting data, and briefly describe results from comparison of species and an artificial selection



experiment.

SPECIMEN HANDLING

To handle specimens, we devised thesimple ‘wing grabber’ suction device shown in Fig 1. This
isasimplified version of the apparaus used by Weber (1988). Vacuum is provided by a small
pump (1/8hp 22 I/min Welch dry vacuum pump 2522B-01). The flies to be measured are
anaesthetized on astandard CO, stage. The operator then takes the wing grabber in one hand,
while maneuvering the target fly with a small paintbrush in the other hand. Once the wing
grabber is properly positioned with the dlit directly behind the fly and parallel to its wings, the
operator places one figure ove the top hole of thegrabber, increasing the suction through the dlit
and sucking onewing into the grabber. Releasing and recovering the opening permits
repositioning of the fly until asinglewing is clearly visible, as shown in Fig. 2a. Thewing
grabber with attached fly is then positioned on the stage of amacroscope (see below) and a video
image recorded. When suction isrdaxed, the fly is pulled from the wing holder and put aside to
recover consaousness. This operation takes a few seconds, so the fly is still anaesthetized despite
being removed from the CO, flow. Operatorsusually become moderately proficient at this
operation after afew trials, and expert with afew hours of experience. The amount of vacuum is
adjusted to alevel where the wing is readily grabbed without folding the wing by varying the
input of the pump or the width of the dlit.

After afew hours of operation, the slide and coverdlip become too dirty for further use.

At this point, the brass fitting is detached from the putty holding it in place and a clean cover dlip



is attached to a new dlide using fresh double-sided tape. A ring of putty is then placed over the

gap between dide and coverdlip and the brass fitting reattached.

IMAGING

We have constructed three imaging systems with different hardware and front-end software
programs. The key requirements of the system are that it produce a monochrome digital image,
record two landmark |ocations and associate both with other recorded information about the
specimen. To calibrate the size of the image, a stage micrometer is digitized before wings are
imaged.

Both of our current systems use an Optem Zoom2100 macroscopeinterfaced with ¥z inch
monochrome CCD video cameras and a frame grabber board in a Windows computer.
Recording information about each image requires programmable software. ImagePro Plus 4.0
(Media Cybenetics, 1999), an expensive imageanalysis program that includes a full-featured C-
based programming language, is readily adapted for this purpose. In addition, we also use Scion
Image (Scion Corporation, 2001), the commercial Windows version of NIH Image. While Scion
Image is available without charge, it can only be used with a Scion frame grabber board. Scion
Image has very minimal programming and output capability, so recording specimen information
requires the use of a companion C++ program we have written.

Once an image is obtained, contrast is adjusted using the automatic algorithm in each
software package. The operator then records the positions of two landmarks, the distal edge of

the humeral break, and the tip of the fissure between the alula and the posterior edge of thewing



blade. The recording programs automatically zoom the image to these areas in turn to improve
accuracy. Theimage is saved as a TIFF file, and the associated identification, landmark

coordinates and scale information written to another file.

FEATURE EXTRACTION

The heart of the image analysis system is a C program called FINDWING, which takes
the TIFF image and the associated coordinate information and produces a cubic B-spline
approximation to the position of al the wing veins distal to the line between the user-supplied
landmarks, as shown in Fig. 2f. The key to the success of this agorithm isits use of an a priori
B-spline model (Lu and Milios, 1994) which is matched to the image of thewing. An example
of thismodel isshownin Fig. 3. B-splines do not pass through their control points (shown as
squaresin Fig. 3), although they do pass through a point half way between adjacent control
points. By convention, the end of the spline curve is represented as a control point (shown as
circlesin Fig. 3), and the interpolating function adjusted to compensate.

FINDWING combines basic image processing of the wing image to facilitate the
registration and modification of the a priori model. FINDWING proceeds in four major steps:
preprocessing, production of a skeletonized binary represantaion, registration of the intersections
of the skeleton with the joinsin the a priori model, and fitting of each spline curve to the
preprocessed image. These steps areillustrated in Fig. 2.

In the preprocessing step, the raw image matrix (Fig. 29 isinverted, subjected to a 3X3

median filter, and then subtraction of a gray scale opening (an erosion, followed by dilation using



the same dimension of operator) to dbtain the image FHg. 2b. These two operations largely
remove small-scde features tha form the uninformetive background of the image This matrix is
used as input for both the skeletonization and fitting steps below.

To obtain a skeletonized binary image, the preprocessed matrix is thresholded, holes
between features filled (Fig. 2c), the resulting features skeleéonized (Fig. 2d), then short line
segments are removed (Fig. 2e). The parameters of each of these operations, such as the size of
the opening filter and the cutoff for thresholding are under the control of the operaor. The
intersections (joints) of the remaining linesin this step are used as input for the registration step.

For registration, the image isfirst flipped to the gandard orientaion shown in Fig. 2 if
necessary. Each observedjoint isthen tested to seeif it isfar enough from the landmark at 6 to
potentially be either point 1 or 2. If it is, thenthe direction from the joint to landmark is used to
define an affine transformation (translation, rotation, x and y scaling and shea) of al the
observed joints. The nearest joint to the set of reference jointsin this transformed space is then
tentatively assigned the identity of that point, and the least squares deviation of this configuration
from the model computed. The affinetransformation that results in the best fit by leas squaresis
then assumed to be the correct one. Reference systems based on both points 1 and 2 are
evaluated in this way to guard against the case where no joint corresponding to one of these
points is detected.

Finally, from the starting point defined by the best affine transformation of the model, the
fit of each of the nine model curvesis optimized using an approach based on that of Lu and
Milios (1994). This approach treats the coordinates of the control points as variables, and does

not fix the locations of the knots. The fit of the curve is optimized by maximizing the brightness



of the pixels under the curve in the inverted image (Hg. 2b). The brightness (b, range 0 to 255)

of each pixel istransformed to “energy” E as E; = 255 exp[-0.125, ], and this matrix

smoothed. The energy of a spline curve isthe sum of the energy of each point under the curve.
This energy is maximized by saving for the gradient vector of each control paint with respect to
E, then updating the set of control points using a variable step size. When this step convergesto a
solution, the resulting set of 100 parametersis output.

The output of FINDWING is afile giving the model parameters for each wing, and a
TIFF image with the model overlayed on the raw image (Hg. 2f). Thismodd isreadily used to
solve for derived measurements of any aspect of wingform defined by the model. We have
principally analyzed thelocations of vein intersections using a geometric morphometric
approach, but any parameters measurable from the original vein structure, such as lengths,
perimeters, areas or angles, can be recovered from the model.

The fitting parameters currently implemented in FINDWINGS work well on
monochrome images that are 316 by 240 pixels. We expect that parameters giving good fits for

other image sizes could be found, although we have not yet done so.

RUNNING FINDWING

The success of FINDWING in fitting a model depends on the initial model parameters furnished

the program, and alarge set of fitting parameters that can be altered by the user. To maximize

the success of the splining process, the model and fitting parameters often must be altered for



each batch of wings according to species or lighting conditions. Finding an appropriate set of
parameters is a matter of trial and error, aided by examining the results of intermediate
processing steps (Fig. 2). Fitting parameters that are frequently altered include the dimension of
the open radius used in preprocessing, and the threshold used to create the binary image for
skeletonization. The same model parameters are frequently successful for species with similar
wing shapes. When anew model is needed, it is usually quite easy to find, as even a poor set of
initial model parameters will result in agood fit to a minority of wingsin asample. Use of any
of these successful output parameter sets as the initial model usually resultsin suitable fit to the
majority of imagesin subsequent runs. Alternati vely, a new model can be created by digitizing a
likely set of control points, based on the properties of B-splines (Fig. 3).

We use FINDWING for both batch processing of large sets of wings, and for real- time
interactive processing of single wings. When the goal of a study isto characterize variation
among individualsor taxa, batch processing is more rgpid than real-timeprocessing. Red-time
processing is convenient during a selection experiment, where a decision about whether to use an
individual as a parent must be made rapidly. An important advantage of real time processing is
that the operator can immediately examine the fit and if necessary ater the fitting parameters and
rerun FINDWING until a suitable fit is achieved. The cost isthetime that the operaor putsinto
this checking and rerunning process. The run time of FINDWING itself is less than a second per
wing on current Windows-based processors. Inbatch mode, one se of fitting parameters will
typically produce excellent fits for 95 to 98% of the specimens. When used in batch mode, an
experienced operator can image about 1 fly every 40 seconds. In red-time applications, thisis

slowed to about 1 fly per minute.
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When processing wings in batch mode, an important challenge is finding those cases
when the fit of the model to the image is deficient. In all batch applications, we have been
interested in the coordinates of landmark points, rather than curve locations per se. Since the
vast majority of wings spline properly, examining each image is exceptionally tedious. To
automate this process, we examine only multivariate outliers. The locations of the twelve labeled
landmarks shown in Fig. 3 arefirst identified as the intersections of the appropriate model
curves. Landmark coordinates are then aligned using the generalized least squaresfit in tpsRegr
(Rohlf, 1998b). Potential outliers arethen flagged with Rousseeuw’ s minimum volume ellipsoid
(MVE) algorithm (Rousseeuw, 1985; Rousseeuw and van Zomeren, 1990), as implemented in
the S-Plus program cov.mve (Insightful Corporation, 2001a). MV E uses the Mahalanobis
distance based on arobust estimate of the covariance matrix to detect outliers, thus preventing
outliers from masking their own presence. The unaligned landmark coordinates from each
outlier model aredisplayed dong with the raw wing image in the digitizing program tpsDig
(Rohlf, 1998a), and landmarks dragged to their proper locations usinga mouse, if necessary. This
procedure finds both abnormal wings and cases where the model does not fit well.

Real-time processing is currently implemented through the C++ program SELECTOR
that uses the output of a Scion Image macro and runs FINDWING and ACDSeg, atiff viewer
(ACD Systems, 2001). Batch processing is implemented through aseries of S-Plus saripts
(Insightful Corporation, 2001b) that spawn the necessary programs FINDWING, ACDSee,
tpsRegr and tpsDig. These scripts are currently bang ported to R, the share-ware
implementation of S.  Compiled code for FINDWING, the S-Plus scripts, and example data are

available at http://www.bio.fsu.edu/~dhoule/Software/ . The source code for FINDWING is
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available from the first author.

REPEATABILITY

To assess the repeatability of the WINGMACHINE system, we repeatedly imaged and analyzed
the wings of Drosophila melanogaster generated aspart of a much larger quantitative genetic
study (Mezey and Houle, 2003). One hundred thirty-five D. melanogaster femaleswere
captured in Wabasso, Floridain March 2002 and their offspring pooled to form a laboratory
population. InAugust 2002, fivemales from this popu ation were each mated to three virgin
females, and their offspring reared on standard cornmeal -sucrose-brewer’ s yeast medium at
25°C. A sample of offspring from these crosses were measured over a period of 9 days by five
operators. Flies were measured between 2 and 11 days of adult age. 1n each case, the upper side
of the left wing wasimaged. Maleflies (N=87) were imaged an average of 3.3 times, and
femaleflies (N=92) an average of 2.7 times each, for atotal of 535 wing images.

Variance component estimates for each sex separately showed that the variances did not
differ significantly, 90 the sexeswere andyzed together. Variance components for centroid size
and the coordinates of the 12 landmarks were estimated in the SAS program MIXED (Littell et
a., 1996; SAS Institute, 2002), with sex as a fixed effect and fly and operator as random effects.
Variance components for the x and y coordinates of each point were summed to obtain the point
variance estimates shown in Table 1. Significance of the main effects at each point was tested by
MANOVA in GLM (SAS Institute, 2002).

As expected, femde wings are on average larger than male wings (centroid size 1201 vs.
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1036 um), and the mean location of all of the landmarks also differs between the sexes at
P<0.0001. The repeatability of centroid size within sexesisvery high at 96%. Table 1 also
shows the among fly variance component over sexes, and the proportion of the within-sex
variance that thisrepresents. The average repeatability over all 12 pointsis82%. The least
repeatable points also tend to havethe least variance, so the proportion of the total variancein
locations that is fly variance is alittle higher at 86%. Point 5 isthe least accurately captured
(repeatability 47%), which is not surprising as this curve does not follow the entire length of the
costal vein. Thiswas a deliberate choice in the design of the program, asthereis alage break at
the end of the costathat is quite difficult to spline around. When point 5 is removed from
consideration, the average repeatability risesto 85%. Operator effects are significant for the
majority of the points, but represent less than 1% of the total variation among images. Point 6,
one of theinitial landmarks entered by the operator, has the largest operator efect, but thisis still
only 3.2% of thetotal.

Another potential source of error isthe choice of the initial model and fitting parameters.
To investigate this, we took the images from the above data set measured by one operator
(N=179), and splined and corrected them using two different sets of initial model parameters and
four different sets of fitting parametersin atotd of five combinations. After the edting process,
repeatabilitiesacross this set of measurements are considerably higher, totaling 93%, as shown in
the final column of Table 1. Mean differences among parameters areslight, and generally not
significant. Even when models based on the wings of three different species areused for the
initial models (D. melanogaster, virilis, and affinis), total repeatability only declinesto 91%. As

above, points 5, 11 and 12 again have relatively low repeatabilities.
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SpeCIES DATA

One important use of high dimensiond phenotypic data that an automated system can produce is
investigation of the relationship between phylogeny and phenotypic evolution. For example,
discrepancies between phenetic and phylogenetic relationships may indicate taxa where evolution
has been unusually rapid or unusual in some other way.

To investigate the ability of the wing machine system to measure other species, we
imaged individuals of 24 speciesin the sub-family Drosophilinae of the family Drosophilidae,
listed in Table 2. Species were chosen to represent awide diversity of taxain the traditional
genus Drosophila, dlong with afew outgroup taxa. Stocks were obtained through collection, or
through the Drosophila Species Stock Center, then at Bowling Green. Specimens were mostly
reared in our laboratory on either cornflour-sucrose, or banana-molasses medium according to the

recommendationsof the Stock Center (currently at http://stockcenter.arl.arizona.edu/).

Individuals of Scaptodrosophila stonei, Zaprionus sepsoides, Z. inermis and D. micromelanica
did not reproduce in our hands, and so wings of individuals emerging from vials sent by the stock
center were imaged. Individuals of D. melanogaster were drawn from two populations: awild
collection from Whitby, Ontario Canada; and along-term laboratory population (V) (Houle and
Rowe, 2003). All specimens were imaged and splined by one operaor. Splining model and
fitting parameters were adjusted for each species to maximize the success rate as judged by the
operator. The result was that a different model wasused for each species. Discriminant analysis
was carried out in Proc Discrim in SAS (SAS Institute, 2002), while UPGMA was carried out

with “agnes’ in S-Plus (Insightful Corporation, 2001a).
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Despite the great interest in the genus Drosophila as amodel for genetics, development
and evolution, there is still considerable doubt over the correct phylogeny within the genus and
the Drosophilinae. Fig. 4 presents a phylogenetic hypothesis for the taxa in our sample, showing
some major unresolved issues. The consensus phylogeny of Remsen and O’ Grady (Remsen and
O'Grady, 2002) was used as the basis for the hypothesis, supplemented by other results for the
more closely related taxa (Powell and DeSalle, 1995; Tatarenkov and Ayala, 2001; O'Grady and
Kidwell, 2002).

The aligned and size-adjusted landmark coordinates for all 2406 individuals measured are
shown in Fig. 5. Overall, the positions of landmarks are quite conservaive, with considerable
overlap in landmark positions among species. Wing shape in the Drosophilinae provides an
example of relative stasis.

Despite the impression of stasis, linear discriminant analysis of the aligned data, plus
centroid size indicates that taxa are usually diagnosable: When arandom half of the datais used
to train the discrimi nant functi on, the error rate in assigning speci mensin the remaining,
evaluation data st to speciesis only 4%, compared to 3% in the training data set itself. The vast
majority of dassification errors are between two closely-related species pairs: D. melanogaster
and simulans, and algonquin and athabasca in sub-genus Sophophora. D. robusta and hydeii in
subgenus Drosophila are aso frequently confused, despite being less closely related. The wide
taxonomic samplingin our data set suggests that a randomly chosen set of species waould be less
diagnosable.

Ordination of the data aong thefirst and third linear di scriminant axes is shown in Fig.

6. Thefirst and third axes explain 33 and 13% of the variation respectively. The second
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discriminant axis (which explains 20% of the variation) is not shown, asit largely servesto
separate the divergent D. guttifera from the other species. Examination of the ordination shows
some support for the major hypothesized species groups. In this projedion, subgenus
Sophophora and the virilis-repleta clade of subgenus Drosophila are reasonably tightly grouped.
The hypothesized immigrans clade, however, is spread across the entire space. In paticular D.
guttifera isvery far removed from other members of this clade.

Thisimpression is confirmed when the species are clustered based on the aligned
landmark data, as shown in Fig. 7. Most members of the sub-genus Sophophora cluster together,
with the exception of D. willistoni. D. busckii from subgenus Dorsilopha aso clusters with the
Sophophorans. Thevery closdy related pairs (D. melanogaster and simulans, and algonquin and
athabasca) are also very similar in wing shape. The virilis-repletaclade is also grouped together
in general, although in this casewith interlopers Z. sepsoides and D. falleni. The more closely
related taxa in this clade are not generally most similar in wing shape. Asin the discriminant
projection, the immigrans clade is not recovered in the cluster analysis, with representatives
scattered across the dendrogram. The two Scaptodrosophila group together.

Overall, the results suggest that wing shape retains a good deal of phylogenetic structure,
but with cases of marked discordance. The case of D. guttifera is particularly suggestive, asitis
one of few continental Drosophila species with marked wings (a series of 11 small melanized
spots scattered dong the long veins). Perhaps sexud selection is responsible both for these
display traits and for the very unusual shapeof wingsin this species. On the other hand D.
nebulosa also has melanized wings, but atypical wing shape. D. willistoni has very unusual

wings for the otherwise conservative sub-genus Sophophora. Careful study of the speciose
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willistoni subgroup may suggest hypotheses about the causes of its divergent wing shape.
Convergence in wing form is suggested by the similarity of phylogenetically distant taxa, such as

D. busckii grouping withinthe Sophophorans.

SeELECTION ON WING SHAPE

Wing size or shape has | ong been a popular target for artificia selection experiments (e.g.
Reeve and Robertson, 1953; Waddington, 1953) due to the relative ease with which wings can be
measured. For measurement of simple characters, such as length, our automated system offers
few advantages. For some questions, however, it is advantageous to be able to readily construct
complex selection indices that capture many aspects of variation. For example, to test whether
arbitrary aspects of form can respond to selection, Weber (Weber, 1990, 1992) selected on six
ratios of lengths between landmarks on the wing. Remarkably, dl six ratios were readily able to
evolve away from the alometric relationship they showed within species. The spline models we
fit to each wing alow the instantaneous cal culation of any function of wing shape.

As part of an experiment to assess the role of epistasisin evolution, we are using the
WINGMACHINE system to select on acomplex index of wing shape. The base population for
this experiment isthe IV laboratory population (Houle and Rowe, 2003). For the purposes of
this experiment, we needed to select on two initially uncorrelated but highly heritable traits. To
choose appropriate traits, we obtained wing datafrom parents and offspring of 57 full-sib
families (N=470 offspring). Exploratory analyses of avaiety of shgpe measuresin this

population suggested a suitable pair of traits.
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Trait S, isdefined as the $andardized average distance between veins L3 and L4 distal to
the proximal crossvein. See Fig. 2afor the vein terminology used. VeinsL3 and L4 lie on either
side of the anterior/posterior compartment boundary, the origin of morphogens that structure the
development of the wing (Held, 2002). To calculatesS,, we took ten evenly spaced points along
the length of L3 distal to the crossvein, and solved for the distance to the closest point on L4.
The average of these distances was then standardized by wingarea. Trait S, isthe average of the
distance that the crossvein lies along long veins L4 and L5, standardized by the total length of
that vein. The crossveins are determined relatively late in disk development, and involve genes
different than those that set up the A-P boundary that may affect S, (Held, 2002). S,and S, are
therefore probably affected by different developmental processes. Traits S, and S, had high
heritabilities (0.54 + 0.05; 0.64 + 0.06 respectively) and additive genetic coeffidents of variation
typical of those found in fly wings (1.5% and 1.6%; Houle, 1992). As expected given their
different developmental origins, S, and S, have a non-significant additive genetic correlation
(r,=0.12).

The selection index used for artificial selection was/= 2.6S, +S,. S, wasweighted 2.6
times as much in theindex as S, so that the intensity of selection on each trait would be equal.
We formed two replicate populations by arandom division of fliesin the IV population, then
founded three treatments in each replicate: selection up, selection down, and a control. Each
generation, in each of the four selected treatment/replicate combinations 100 virgin flieswee
measured, and the 20 most extreme chosen as parents of the next generation.

Figure 8 shows the highly significant 15 S. D. divergencein trait values achieved between

these selected linesin 15 generations. The realized 4’ for the selection index averaged over
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treatments and replicates was 0.38, lower than that in the base population. Examination of Fig. 8
shows that thisis due to a combination of asymmetry between seleded directions (Down
responded at arate less than Up), and reduction in response with increasing number of

generationsin the Up lines.

DiscussoN

Our automated wing analysissystem WINGMACHINE, successfully fulfils its intended purpose
as ameans of rapidly gathering repeatabl e high-dimensional phenotypic data. We have shown
that the system is useful for characterizing variation among Drosophilid species, and that it
facilitates artificial selection experiments on complex aspects of wing shape.

Dryden and Mardia (1998) divide image analysisinto “low” and “high-level” operations.
Low level analysisinvolveslocal operations on small numbers of pixels, such as filters and edge
detection. High level analysisinvolves detection and fittting of large-scale features of an image.
Sophisti cated Bayesian high-level anaysisis becoming common in bio-medical imaging
(Dryden and Mardia, 1998, Chapter 11). Our use of ana priori model of wing shgpethat is
deformed to optimize fit to each image is a simple example of high-level analysis.

Prior to developing this approach, we devoted considerable effort to developing a feaure
extraction system based entirely on low level analysis. These efforts were frustrated by several
aspects of wings. The leading veins are thick and exhibit high contrast, while the trailing edge of
the wing does not. Second, lighting across the image is uneven. Third, small flawsin the image,

such as dust or hairs, or in the wing itself, such as small nicks, are hard to automatically
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disentangle from wing features. All of these frustrate simple edge detedion and tracing
agorithms. WINGMA CHIN E successfully splines wingsthat are both damaged and dirty.
Similar complications are common in mog biological imagng problems. Our successin
implementing high-level analysis suggeststhat it could be useful in alarge number of image
analysis applications in basic biology.

More specifically, our approach may be directly extensible to other objects that can be
summarized as aframework of intersecting lines, such asleaf veins and edges, scales or feathers.
The specification of amodel with different vein or edge topologies than in Drosophila wingsis
readily accomplished. While the precise low and high-level fitting algorithms in our software are
specifically tailored to Drosophila wings, we are gptimistic that these could be modified to fit
models of very different structures.

In comparison with the more widely used hand-digitization of wing landmarks (e.g.
Zimmerman et a, 2000; Klingenberg and Zaklan 2000) the WINGMA CHINE approach has the
advantage of great speed, both in handling the specimens, and recovering quantitative
information from them. An experienced operator spends on average about 1 minute per specimen
intotal. This speed comes with some disadvantages. Whilethe repeatabilities of most
landmarks are quite high, human observers can in some cases do much better. If thegoal isto
characterize the mean of a population (such as afamily or aspecies), there is a simple tradeoff
between speed and accuracy: if it takesx times as long to measure an image by hand, thenit will
be worthwhile to do so if the measurement error of the automated system is greater than x times
the measurement error achieved by hand.

The structure of the model chosen for fitting and the details of image processing
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determine the precise locations of the curves and interesections recovered. Theresult isthat the
landmarks, for example, are frequently not asa human observer would place them. For example
point 3 (see Fig. 3 for definition of landmarks) is repeatably placed on the wing margin just
above the intersection with L3, while point 2 is placed directly at the intersection of L4 and the
margin. Point 11, the intersection of L2 and L3 hasrelatively low repeatability becauseit is
recognized as the intersection of the curves along these veins, rather than as the sinus formed by
the interior outline of the veins, as a human observer would naturally do. This feature of the
model potentially creates biasif a particular feature of the wing is of primary interest.

A third disadvantage is that the WINGMACHINE may fail for wings of specieswith
highly melanized spots at vein interesections, for example the “ picture-winged” Hawaiian
Drosophila. Initial attempts to spline wings of D. grimshawi have such a high error rate that
hand-digitizationis simpler and less time-consuming. On the other hand, melanization seems to
be dependent on rearing conditions, and we have had good success with lighter individuals of
another picture-winged species, D. gymnobasis.

Ultimately, our understanding of biological systems needs to encompass the relationships
between molecular and phenotypic data. Much attention is now focused on high throughput
genomic techniques such as sequencing, expression microarrays and proteomics. To take
advantage of this avalanche of genetic data, comparable eforts will be needed to characterize the
whole-organism phenotype what might be called phenomics (Houle, 2001). The
WINGMACHINE is an example that servesto illustrate both that phenome level efforts are

possible, and just how far short of comprehensive knowledge they fall.

21



ACKNOWLEDGEMENTS

Feng Lu deserves al credit for developing the HNDWING program. If only he hadn’t
disappeared. Y.Ngand V. Jacksonwrote the program SELECTOR. F. James Rohlf generously
modified his TPS programs to facilitate our analyses, and responded to all queries on how to use
them. L. Rowe, D. Jackson, T. Dickinson and D. Currie offered valuable advice. D. Houle was
supported by NSERC, and by NSF grant DEB-0129219. P. Galpern was supported by a PGS
awardfrom NSERC. L. Carpenter, M. Castilla, J. Gunzburger, N. Guram, Y. Ng, F. Smyth, J.

Woehlke, and T. Weie, all helped measure wings.

22



REFERENCES

ACD Systems. 2001. ACDSee 4.0. ACD Systems, Inc. (www.acdystems.com), Saanichton, BC.

Cowley, D. E.,, W. R. Atchley, and J. J. Rutledge. 1986. Quantitative genetics of Drosophila
melanogaster. . Sexual dimorphismingenetic parametersfor wing traits. Genetics 114:549-
566.

Dickinson, M. H., S. Hannaford, and J. Palka. 1997. The evolution of insect wings and their sensory
apparatus. Brain Behav. Evol. 50:13-24.

Dryden,I.L.,andK. V. Mardia. 1998. Statistical Shape Analysis. John Wiley and Sons, Chichester.

Ferson, S., F. J. Rohlf, and R. K. Koehn. 1985. Measuring shape variation of two-dimensional
outlines. Syst. Zool. 34:59-68.

Garcia-Bellido, A., and J. F. de Celis. 1992. Developmenta genetics of the venation pattern of
Drosophila. Ann. Rev. Genet. 26:277-304.

Gilchrist, A. S., R. B. R. Azevedo, L. Partridge, and P. O'Higgins. 2000. Adaptation and constraint
in the evolution of Drosophila melanogaster. Evolution and Development 2:114-124.

Held, L. I., J. 2002. Imaginal Discs. The Gendic and Cellular Logic of Pattern Formation.
Cambridge, Cambridge.

Houle, D. 1992. Comparing evolvability and variability of quantitativetraits. Genetics130:195-204.
Houle, D. 2001. Characters as the units of evolutionary change. Pages 109-140 in The Character
Concept in Evolutionary Biology (G. P. Wagner, ed.). Academic Press, New Y ork.

Houle, D., and L. Rowe. 2003. Natural selection in abottle. Am. Nat. 161:50-67.
Insightful Corporation. 2001a. S-Plus 6.0 Professional Release 1. Insightful, Sesttle.

Insightful Corporation. 2001b. S-Plus 6 for Windows Programmer's Guide. Insightful, Sesttle.

23



Jensen, R. J, K. M. Ciofani, and L. C. Miramontes. 2002. Lines, outlines, and and landmarks:
morphometric analyses of leaves of Acer rubrum, Acer saccharinum (Aceraceae) and their
hybrid. Taxon 51:475-492.

Klingenberg, C. P, and S. D. Zaklan. 2000. Morphological integration between developmental
compartments in the Drosophila wing. Evolution 54:1273-1285.

Littell, R. C., G. A. Miliken, W. W. Stroup, and R. D. Wolfinger. 1996. SAS System for Mixed
Models. SAS Institute, Cary, NC.

Liu,J., J. M. Mercer, L. F. Stam, G. C. Gibson, Z.-B. Zeng, and C. C. Laurie. 1996. Geneticanalysis
of a morphological shape difference in the male genitalia of Drosophila simulans and D.
mauritiana. Genetics 142:1129-1145.

Lu, F. 1997. FINDWING: Drosophilid spline fitting software. Dept. of Computer Science,
University of Toronto.

Lu, F.,and E. E. Milios. 1994. Optimal splinefitting to planar shape. Signal Processing 37:129-140.

Media Cybernetics. 1999. ImagePro Plus, Version 4.0 for Windows. Media Cybernetics
(www.mediacy.com), Silver Spring, MD.

Mezey, J., and D. Houle. 2003. Dimensionality of wing shape in Drosophila melanogaster. Nature
submitted.

OGrady, P. M., and M. G. Kidwell. 2002. Phylogeny of the subgenus Sophophora
(Diptera:Drosophilidae) based on combined analysis of nuclear and mitochondrial DNA
sequences. Mol. Phyl. Evol. 22:442-453.

Powell, J. R., and R. DeSalle. 1995. Drosophila molecular phylogeniesand their uses. Pages87-138

in Evolutionary Biology, Vol. 28 (M. K. Hecht, R. J. Macintyre, and M. T. Clegg, eds.).

24



Plenum Press, New Y ork.

Reeve, E. C., and F. W. Robertson. 1953. Studiesin quantitative inheritancell. Analysisof astrain
of Drosophila melanogaster selected for long wings. J. Genet. 51:276-316.

Remsen, J., and P. O'Grady. 2002. Phylogeny of Drosophilinae (Diptera: Drosophilidae), with
comments on combined analysis and character support. Mol. Phyl. Evol. 24:249-264.

Rohlf, F. J. 1993. Feature extraction in systematic biology. Pages 375-392 in Advancesin computer
methods for systematic biology: artificial intelligence, datebases, computer vision (R.
Fortuner, ed.). Johns Hopkins, Baltimore.

Rohlf, F. J. 1998a. tpsDig: digitizing software. V. 1.17. http://life.bio.sunysb.edu/morph/. Dept. of
Ecology and Evolution, State University of New Y ork, Stony Brook, NY .

Rohlf, F. J. 1998b. tpsRegr: shape regression. V. 1.17. http://life.bio.sunysh.edu/morph/. Dept. of
Ecology and Evolution, State University of New Y ork, Stony Brook, NY .

Rousseeuw, P. J. 1985. Multivariate estimation with high breakdown point. Pages 283-297 in
Mulivariate Statistics and Applications (W. Grossman, G. Pflug, I. Vincze, and W. Wertz,
eds.). Reidel, Dordrecht.

Rousseeuw, P. J., and B. C. van Zomeren. 1990. Unmasking multivariate outliers and | everage
points. J. Am. Stat. Assoc. 85:633-639.

SAS Ingtitute. 2002. The SAS Sygem for Windows, Release 8.01. SAS, Cary, NC.

Scion Corporation. 2001. Scion Image 2.0. Scion (www.scioncorp.com), Frederick, MD.

Stark, J., J. Bonacum, J. Remsen, and R. DeSalle. 1999. The evolution and devel opment of Dipteran
wing veins: a systematic approach. Ann. Rev. Entomol. 44:97-129.

Tatarenkov, A., and F. J. Ayala 2001. Phylogenetic rdationships among species groups of the

25



virilis-repleta radiation of Drosophila. Mol. Phyl. Evol. 21:327-331.

Waddington, C. H. 1953. Genetic assimilation of an acquired character. Evolution 7:118-126.

Weber, K. E. 1988. A system for rapid morphometry of wholeg live flies. Drosop. Inform. Serv.
67:96-101.

Weber, K. E. 1990. Selection onwing alometry in Drosophila melanogaster. Genetics 126:975-989.

Weber, K. E. 1992. How small are the smallest sel ectable domains of form? Genetics 130:345-353.

Weber, K. E., and L. T. Diggins. 1990. Increased selection response in larger populations. Il.
Selection for ethanol vapor resistance in Drosophila melanogaster at two population sizes.
Genetics 125:585-597.

Weeks, P. J. D., and K. J. Gaston. 1997. Image analysis, neural networks, and the taxonomic
impediment to biodiversity studies. Biodiversity and Conservation 6:263-274.

Zhou, Y., L. Ling, and F. J. Rohlf. 1985. Automatic description of the venation of mosquito wings
from digitized images. Syst. Zool. 34:346-358.

Zimmerman, E., A. Palsson, and G. Gibson. 2000. Quantitative trait loci affecting components of

wing shape in Drosophila melanogaster. Genetics 155:671-683.

26



Table 1. Repeatabilities of centroid size and landmark positions in the Wabasso population of

Drosophila melanogaster. Centroid sizeisin units of pm. Point locations are in units of mean

centroid size/1000.
Percent of within-sex variance
Over
Over repeated fitting,
Among imaging models
Difference® fly %

Trait |2 - variance® %Fly  Operator % Fly
Centroid sze 164.83 517.21 96.2 0.5 99.5
Landmark: 1 3.32 52.67 90.2 1.1%** 97.4
2 6.83 22.54 91.1 0.0 96.7
3 4.18 21.78 89.5 0.3% 96.7
4 11.68 75.15 91.6 0.9*** 96.1
5 3.44 14.32 46.9 2.4% 72.6
6 3.16 11.71 75.7 3.2%** 94.6
7 4.60 39.82 94.3 0.2** 97.8
8 2.19 43.83 95.2 0.2*** 98.0
9 1.42 24.57 90.6 0.9*** 96.3
10 2.61 26.74 91.7 0.4*** 97.5
11 2.17 7.67 64.5 1.6*** 78.7
12 4.08 12.39 65.8 0.6*** 71.0
Landmark total 355.17 86.0 0.8 92.7
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* P<0.05; ** P<0.01; *** P<0.001.

®Distance between mean locations of each paint. All differences between the sexes are significant
at P<0.0001.

®All among fly dfferences are significant a& P<0.0001. Point variances are the sums of variance

componentsin the x and y dimensions.

28



Center (http://stockcenter.arl.arizona.edu/).

Table 2. Taxa included in the multi-species data set. Genus designations follow the stock list of the Tucson Drosophila Species Stock

Genus (subgenus) species Code Collection Locale Stock No. N
Drosophila (Sophophora) algonquin ALG Toronto, Ontario, Canada - 64
Drosophila (Sophophora) athabasca ATH  Toronto, Ontario, Canada - 76
Drosophila (Sophophora) melanogaster MEL  Seetext - 192
Drosophila (Sophophora) simulans SIM  Toronto, Ontario, Canada - 114
Drosophila (Sophophora) nebulosa NEB San Jose, CostaRica 14030-0761.1 97
Drosophila (Sophophora) willistoni WIL  Royal Paim Pk.,Florida, USA  14030-0811.2 88
Drosophila (Sophophora) sturtevanti STU  Montecristi, Dominican Rep. 14043-0871.11 102
Drosophila (Sophophora) saltans SAL  SanJose, CostaRica 14045-0911.0 104
Drosophila (Drosophila) virilis VIR  Pasadena, California, USA 15010-1051.0 109
Drosophila (Drosophila) americana americana AME  Millersburg, P.A., USA 15010-0951.3 113
Drosophila (Drosophila) hydeii HYD Toronto, Ontario, Canada - 180
Drosophila (Drosophila) repleta REP  Barbados 15084-1611.0 108
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Table 2, continued.

Genus (subgenus) species Code Caollection Locale Stock No. N
Drosophila (Drosophila) micromelanica MIC  SantaRitaMts,, Arizona, USA  15030-1151.0 31
Drosophila (Drosophila) robusta ROB Lake Champlan, Vermont, USA 15020-1111.1 108
Drosophila (Drosophila) falleni FAL  Toronto, Ontario, Canada - 95
Drosophila (Drosophila) guttifera GUT  Austin, Texas, USA 15130-1971.0 103
Drosophila (Drosophila) immigrans IMM  Tofino, B.C., Canada - 101
Drosophila (Drosophila) sulfurigaster SUL  KualaLumpur, Malaysia 15112-1811.0 109
Drosophila (Dorsilopha) busckii BUS Tofino, B.C., Canada - 101
Hirtodrosophila pictiventris PIC Great Inaguals., Béhamas 12000-0072.0 113
Zaprionus inermis ZIN Koutaba, Cameroun 50000-2746.0 12
Zaprionus sepsoides ZSE  unknown 50000-2744.0 21
Chymomyza procnemis CPR  Oahu, Hawaii, USA 20000-2631.1 106
Scaptodrosophila stoneii STO Téhran, Iran 11010-0041.0 44
Scaptodrosophila lebanonensis casteeli LEB  Veyo, Utah, USA 11010-0011.0 98
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Ficure CAPTIONS

Fig. 1. Wing grabber. (@) Separated into components; (b) cross-section of assembled grabber.

Fig. 2. Stepsinimage processing. Raw image (a) isreversed, then filtered to minimize background
features (b), then thresholded, and hdes filled (c), feaures are skeletonized (reduced to 1 pixel
width) (d) and short segments pruned away (€). The intersections of these lines are used to register
the model with thisimage, and the model modified to fit the grey scaleimagein (c). Thefinal result

with the spline model overlayed on it (f). The white circles are the twolandmarks digitized by the

operator. Wing is from the Wabasso population of D. melanogaster.

Fig. 3. A B-spline wing model. Circles are the ends of splines, and the large filled cirdes are the
landmarks analyzed. The squares are theinternal control points of the splines. Thelong veinsare
labeled according to the standard * genetic’ nomenclature used in the paper. Themodel isoptimized

for awing of Drosophila affinis.

Fig. 4. Phylogenetic hypothess for the taxain this study.

Fig. 5. Aligned spedes data. Black circles represent the mean locations of landmarks in each
species; grey dots are the positions of each of the landmarks in each of the 2406 specimens. The
wing used as the basis for the line drawing was chosen to be as close as possible to the tangent or

reference configuration.

31



Fig. 6. Ordination of speciesdataon thefirst and third discriminant axes. Gray dotsareindividuals,

while large symbol s denote species means.

Fig. 7. UPGMA dendrogram of taxa based on mean wing shape.

Fig. 8. Responseto 14 generations of selection on thewing shapeindex. Two replicate popul ations

were selected up, and two were selected down. Wings of female flies from an up-selected (upper)

and down-selected (lower) population at generation 14 are shown.
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Houle et al. Fig. 1. Wing grabber. (a) Separated into components; (b) cross-section of assembled grabber.
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Houle et al. Fig. 2 Steps in image processing. Raw image (a) is reversed, then filtered to minimize background features (b), then
thresholded, and holes filled (c), features are skeletonized (reduced to 1 pixel width) (d) and short segments pruned away (e). The
intersections of these lines are used to register the model with this image, and the model modified to fit the grey scale image in (c). The final
result with the spline model overlayed on it (f). The white circles are the two landmarks digitized by the operator. Wing is from the Wabasso

population of D. melanogaster.




Houle et al. Fig. 3. A B-spline wing model. Circles are the ends of splines, and the large filled circles are the landmarks analyzed.
The squares are the internal control points of the splines. The long veins are labeled according to the standard ‘genetic’ nomenclature
used in the paper. The model is optimized for a wing of Drosophila affinis.

L1

A1
A\
©
N
N
»
|
©




Houle et al. Fig. 4. Phylogenetic hypothesis for the taxa in this study.
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Houle et al. Fig. 5. Aligned species data. Black circles represent the mean locations of landmarks in each species; gray dots
are the positions of each of the landmarks in each of the 2406 specimens. The wing used as the basis for the line drawing
was chosen to be as close as possible to the tangent or reference configuration.




Houle et al. Fig. 6. Ordination of species data on the first and third discriminant axes. Gray dots are individuals, while
large symbols denote species means.
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Selection Index

Houle et al. Fig. 8. Response to 14 generations of selection on the wing shape index. Two replicate populations were
selected up, and two were selected down. Wings of female flies from an up-selected (upper) and down-selected (lower)
population at generation 14 are shown.
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