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■ Abstract The determination of the order of genes along cereal chromosomes
indicates that the cereals can be described as a single genetic system. Such a frame-
work provides an opportunity to combine data generated from the studies on different
cereals, enables chromosome evolution to be traced, and sheds light on key structures
involved in cereal chromosome pairing. Centromeric and telomeric regions have been
highlighted as important in these processes.
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INTRODUCTION

More than 50% of angiosperms are polyploids that occur either by multiplica-
tion of a basic set of chromosomes (autopolyploidy) or as a result of combining
two parental genomes (allopolyploidy). The introduction of alien variation into
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polyploids during plant breeding clearly would benefit from an understanding of
the genome relationships of polyploid crop species and their wild diploid rela-
tives. As a result, the genomic relationships within theTriticeae (wheat and its
wild relatives) have been extensively studied (110). By 1952, the work of Kihara
and colleagues had established many of the genomic relationships of the diploid
and polyploidTriticum andAegilopsspecies on the basis of chromosome pairing
in hybrids (110). These studies have continued to the present and have accurately
classified chromosome translocations (92, 115, 135, 136). Chromosome pairing is
assessed by squashing meiocytes at metaphase I and classifying the specific chro-
mosome configurations at this stage. The association of chromosomes implies
some conservation of chromosomal structure (including genes) and suggests a
high degree of conservation of gene order on the chromosomes of wheat and its
wild relatives. Clearly, such studies could not be extended beyond species from
which hybrids could be generated and in which chromosomes paired. Thus for
much of the past 50 years, major cereals and their wild relatives (maize, wheat,
rice, sorghum, and the millets) have been studied largely in isolation. Detection
of variation between individuals at the DNA sequence level in the form of re-
striction fragment length polymorphisms (RFLPs) (97, 107) and the concept of an
RFLP linkage map (158) enabled these comparisons to be extended and the actual
structure of theTriticeaechromosomes to be assessed in more detail. The analysis
of these comparisons revealed a framework by which all data generated on the
cereals can be collated (127, 130, 132). The cereal genomes can be described by a
series of conserved units based on the linkage of genes found within their genomes
(130). The structure of the rice genome is pivotal to the analysis of other cereal
genomes (131, 132).

GENOME ORGANIZATION

Genome Size

Although mammals possess different chromosomes, their genome sizes are similar.
In contrast, cereals have different chromosome numbers and vary greatly in genome
size (21). It was the size of barley, wheat, and rye genomes that initially restricted
their molecular analysis. The genomes of barley (Hordeum vulgare) and hexaploid
bread wheat (Triticum aestivum) are relatively large (5×109 bp and 1.7×1010 bp
per haploid nucleus, respectively). Maize (Zea mays) is intermediate in size 2.4×
109 bp, and sorghum (Sorghum bicolor) is 8×108 bp (21). In contrast, other cereals
and wild grass genomes are relatively small; for example, those of rice (Oryza
sativa) and slender false-brome (Brachypodium sylvaticum) are 4×108 bp and 5×
108 bp in size, respectively (21). Clearly, major changes have occurred in genome
size since their speciation from a common ancestor. Most of this additional DNA
consists of repetitive sequences that evolve rapidly and hence diverge substantially
with speciation (65, 66).
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Base Composition

Nuclear DNA can be heavily methylated at cytosine residues. The base compo-
sition of genomic regions can therefore influence the distribution of methylation
within them. Large mammalian genomes have a CpG content of 1%. This is lower
than the 4% expected for a genome that is 40% G+C rich. Thus there is a marked
underrepresentation of the CpG content in these genomes (26, 71, 148, 163). How-
ever, there are small regions, several hundred bases long, that have a CpG/GpC
dinucleotide ratio of approximately one. Such regions (termed CpG islands) co-
incide with the promoters of genes (29). They are also marked by clusters of
unmethylated CpG dinucleotides, which therefore contain recognition sequences
for methylation-sensitive restriction enzymes. In mammalian genomes, methyla-
tion is largely confined to the sequence m5CpG. In mammalian DNA, 70% to
80% of CpG dinucleotides are methylated. More than 80% of CpG dinucleotides
are also methylated in wheat. In plants, 5-methylcytosine is not confined to CpG
dinucleotides but is also present in more than 80% of the trinucleotides CpXpGs
(83). Therefore, in the nuclear DNA of wheat (and other higher plants), a higher
proportion of the cytosine residues is methylated: 30% compared with 1% to 8%
in vertebrates. A single study has assessed the dinucleotide composition of a ce-
real nuclear genome, namelyTriticum aestivum(bread wheat) (163). The G+ C
content of its genome is 45%. In contrast to mammalian genomes, the genome
of wheat exhibits only a slight reduction in CpG content (83, 148). Therefore, the
observed/expected ratio of CpG content is 0.77 for bulk wheat genomic DNA com-
pared with 0.2 for human genomic DNA, whereas the CpG/GpC ratio for wheat
is 0.78 and for human DNA is 0.23. Because there is little suppression of the
CpG dinucleotide in the wheat genome, both repetitive and single-copy sequences
would be expected to exhibit similar CpG contents. However, sequence analysis
of 60 Kb of the barley genome indicates that the promoter regions of the genes, as
with mammalian genes, were marked by a CpG/GpC ratio of more than one (141).

Gene Distribution

Long-range mapping within a 4-Mb length of the wheat genome indicated five
clusters of unmethylated CG-rich recognition sites for methylation-sensitive re-
striction enzymes defining active genes (36). The distribution of unmethylated
sites between repetitive sequences and single-copy sequences is therefore not
random (128). Also the distribution of unmethylated restriction sites along the
chromosomes of theTriticeae is evidence of a reduced density in the proximal
regions and a higher percentage in the distal regions (128). This implies that the
gene distribution along a cereal chromosome is also not random, with a higher
density of genes concentrated in the distal regions. Extensive physical mapping
of genes with deletion stocks has been undertaken on wheat chromosomes by
Gill and colleagues (62, 74). The data indicate that on all the wheat chromo-
somes, very few genes are located in the proximal third of the chromosome arm.
They also reported that the genes located in the distal regions occur in clusters.
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Figure 1 Schematic representa-
tion of metaphase chromosomes
corresponding to rice chromosome
1 and a chromosome from wheat
group 3. These chromosomes ex-
hibit a similar gene content and
extensive conservation in gene or-
der. The rice chromosome has a
more even distribution of clus-
ters of gene-rich regions. The gene
density in these gene-rich regions
on the rice chromosome will be
higher than in gene-rich regions
in wheat. The proximal regions of
wheat chromosomes are composed
largely of repetitive blocks, with
the distal regions composed of both
clusters of gene-rich regions and
repetitive blocks.

Although the sequence analysis of the 60-Kb region of the barley genome indi-
cated a fivefold lower gene density than inArabidopsis, the density was still six- to
tenfold higher than expected from an equidistant gene distribution in the complex
barley genome (141). This is consistent with the observations of Gill and col-
leagues. A schematic representation of the organization of a wheat chromosome
compared to a rice chromosome is shown in Figure 1. If few genes are located in
the proximal third of the chromosome arm, what is the nature of these regions?
Analysis of repetitive sequence distribution indicated that they could be composed
of blocks of amplified repetitive units that on restriction digestion reduce to dis-
crete fragments of 200 Kb and upwards (24, 128). The rice genome, however, does
not possess such large blocks of repetitive sequences. The proximal regions com-
posed of large blocks of amplified repetitive sequences not only have reduced gene
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densities but exhibit a reduced level of recombination. Therefore, no direct corre-
lation exists between physical and genetic distances in species such as wheat and
barley (111, 157).

Dispersed Repetitive Sequences

The majority of the large genomes of cereals consist of dispersed repeats (65, 66).
The most abundant elements are the retrotransposons (177). Retrotransposons
can be divided into two classes, those flanked by long terminal repeats (LTRs)
and those without LTRs, which terminate with poly (A) sequences. The non-LTR
retrotransposons are also called LINES elements and possess an ORF that codes
for proteins with homology to reverse transcriptase. The first such elements to be
identified in plants were thecin4 from maize (153). LINES elements can be found
in great abundance, for example,del2 identified in lily (108). Recent studies have
suggested that they are ubiquitous in plant genomes (137). LTR retrotransposons
have been classified according to Drosophila-type elements as either gypsy-like
or copia-like, based on the order of the coding proteins between the LTRs. Gypsy
elements, like retroviruses, possess LTR-gag-proteinase-rt-in-LTR and copia ele-
ments are characterized by a LTR-gag-proteinase-in-rt-LTR arrangement. Gypsy
and copia elements are also ubiquitous in cereal genomes and can be found in great
abundance (67, 162). BIS-1 constitutes in excess of 5% of the barley genome and
probably a similar proportion of the genomes of wheat and rye (129). BARE1 is
not only highly abundant in barley genome (160), it is also active (161). Retro-
transposons constitute at least 50% of the maize genome (150). They are found in
the spaces between genes (151, 159). Retrotransposons have increased the size of
the maize genome two- to fivefold since the divergence of maize and sorghum from
a common ancestor about 16 mya (150). Comparison of thesh1–a1 regions in the
genomes of maize and sorghum indicated that the retrotransposons were absent
from the corresponding region in the sorghum genome (35). The gene density of
the gene-rich regions in small genomes, such as rice, will be higher than in larger
genomes, such as wheat (68). Virtually all of the retrotransposons had inserted in
the past 6 million years and most in the past 3 million years in the maize genome
(150). Sequencing of theArabidopsisgenome reveals little intergenic interspersion
of retrotransposons; most are associated with the pericentromeric regions (121).
The implication for the evolution of the cereal genome is that the common ancestral
genome probably possessed few retrotransposons interspersed among their genes
but that the retrotransposons were located in the pericentromeric regions. Genome
expansion results from the accumulation of retrotransposons in such regions. Note,
however, that not only can genomes expand, they can also contract, although it is
unclear how this is achieved (23).

Other transposable elements, such as Ac in maize, possess inverted terminal
repeats and transpose by excision and reintegration. They are present in only tens
to hundreds of copies per genome and therefore do not make a major contribution
to the total DNA content of the genome. They have, however, received special
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attention due to their value in gene tagging (15). No active endogenous elements
have yet been found from theTriticeaegenomes. Another type of mobile inverted
repeat element has been recently identified, MITE, that is associated with the genes
of many cereals (30, 31).

Long Tandem Arrays

Long tandem arrays of essentially identical sequences are found in the subtelom-
eric (142, 171) and pericentromeric heterochromatin regions (91) and the array of
ribosomal RNA genes within the nucleolus organizer regions (73). There is a close
correlation between the site of C and N bands and the presence of long tandem ar-
rays of short, repeating sequences in chromosomal DNA (66). In rye, the subtelom-
eric heterochromatin constitutes from 15% to 18% of the genome, 60% of which
comprises four repetitive sequences (18). These can be organized in a head-to-head
arrangement or in head-to-tail organization (170). Birchler and colleagues demon-
strated that sequences in maize knob regions possess strong homology to a repeat
family specific to the centric region of maize B chromosomes (4). Under certain
conditions, these knobs can be activated to function as “neocentromeres” that form
kinetochores during meiosis. The presence of several classes of tandem and nontan-
dem repeats has been identified in the centromere regions. Two classes (CCS1 and
pSau3A9) of conserved sequences are located at all cereal centromeric sites studied
(maize, wheat, rice, oats, sorghum, barley, and rye) (8, 95). Recent studies indicate
that both sequences are part of the same DNA element; CCS1 is the LTR region
and pSau3A9 is the integrase region of a retrotransposon (5, 51, 124, 138, 144).
The insertion of these retrotransposons into the satellite sequences present at the
centromere regions creates a unique pattern and hence specificity to this region (5).
Retrotransposons have also inserted into the satellite sequences present in the knob
regions (6). Given the rapid evolution of tandem arrays, it is likely that retrotrans-
posons inserting into such sequences are steadily being deleted. These families of
retrotransposons must be continually active in order to provide further elements for
reinsertion.

Telomeres are the termini of chromosomes and in most species are made up of
a short tandem array of similar DNA repeat sequences (182). In plants, they are
mostly composed of many tandemly repeated copies of basic oligonucleotides of
the sequence (TTTAGGG)n characterized by the G-rich strand running in the 5′ to
3′ direction toward the end of the chromosome and the C-rich strand running toward
the centromere (37, 154, 176). The conservation of the basic sequence has been
used as a basis for cloning the repeat families adjacent to the telomeres in rice, bar-
ley, and wheat (11, 37, 99, 101, 147). The repetitive families identified from these
studies have been used to develop RFLP markers with which to mark the ends of
the linkage maps. Many of these repetitive families adjacent to the telomere termini
are specific to these regions. Shorter tandem arrays also occur throughout the ce-
real genomes composed of reiterating units of tens of basepairs (minisatellites) or
even shorter simpler repeats of several basepairs (microsatellites) (174). Markers
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derived from these loci are highly polymorphic and prove useful for genetic map-
ping and fingerprinting varieties (120). Particular classes of microsatellite markers
are associated with LTRs of retrotransposons (145).

Gene Order

The advent of RFLP markers in the early 1980s resulted in the development of
RFLP linkage maps for many of the major cereals, including wheat (48, 69), rice
(34, 104), barley (82, 103), sorghum (38), and maize (32, 33). By the mid-1990s,
these genetic maps were relatively dense and were generated with markers that
detected genic regions. Thus, they began to provide an indication of the gene order
along particular chromosomes. The genetic map of hexaploid wheat that emerged
was a comparative map of its three constituent ancestral genomes (A, B, and D
genomes) (48, 69). Many markers map colinearily across these genomes and are
separated by similar recombination distances. The comparative analysis revealed
that the progenitor genomes had undergone some rearrangements, particularly
chromosomes 4A, 5A, and 7B. In the diploid A genome progenitor, translocations
involving 5AL and 4AL occurred. On polyploidization, a translocation involving
4AL and 7BS occurred, followed by an inversion of 4AL (106, 112). This was
consistent with the predicted translocations proposed from analyzing chromosome
pairing (136).

The availability of such genetic maps for the cereals permitted genome com-
parisons made over the past 70 years to be extended beyond species in which
chromosome pairing studies could be undertaken. Chromosome pairing studies
for mammals were inappropriate, so studies on their comparative genomics began
later with the advent of somatic cell hybrids. The field of comparative mapping has
spawned terms such as linkage or synteny, conserved linkage, conserved synteny,
homology segment, colinearity, and microsynteny. Scientists studying plants or
mammals have used these terms in different contexts. The basic observation is that
groups of genes located together in the ancestral genome are still located together
in the genomes of species that arise from speciation of this ancestor. Clearly, dur-
ing evolution, rearrangements can occur that disrupt the order of genes along a
chromosome but maintain their linkage, or disrupt the order so that the genes are
no longer even linked. The important issue is how much disruption has occurred:
Can linkage of genes still be observed between distantly related species and can
this be exploited? If the gene order observed in the small genome of rice was
sufficiently conserved with that in larger cereal genomes, the rice genome would
provide a tool for gene isolation strategies in the other cereals. The rice genome
would be, in effect, “the wheat genome without the repetitive sequences.” More-
over, comparisons of genome organization across the different cereal genomes and
the solution for these comparisons would mean that the cereals could be thought
of as a single genetic system (22, 132).

The initial comparisons using RFLP maps involved wheat, barley, and rye
(47, 49), and maize and sorghum (122, 143, 178). Although there had been some
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major translocations in rye after its speciation from the progenitors of hexaploid
wheat and barley, the gene order is essentially similar in these species. The com-
parison of related species, maize, and sorghum, which have speciated within the
past 16 to 20 million years, also revealed a degree of conservation of gene order.
Even comparisons of species that have been isolated by more than 60 million years
(180), such as rice and wheat and rice and maize, indicated that genes have been
maintained in a similar order despite gross differences in the genome size and
chromosome number of these species (2, 3, 105). From these initial comparisons
of gene order in the rice, maize, and wheat genomes, genes on the rice genetic
map could be grouped into sets and the genetic maps of wheat and maize could be
described by the same sets of genes (rice linkage segments) (131). Furthermore,
this analysis could also be extended to include the sorghum, foxtail millet, and
sugarcane genomes (127, 130). Thus, a series of sets of genes could be used to
describe most of the major cereal genomes as shown in Figure 2 (see color plate).
The collation of all the information generated from studies on the different cereals
requires a common framework. A limited number of combinations of linkage seg-
ments were noted in the genomes of the various cereals studied. It was therefore
possible to create a generalized genome structure using the rice linkage segments
that, when cleaved in the case of each cereal at a different number of junctions
between the linkage segments, produced structures that describe the gross chro-
mosome structures found in the two sets of maize chromosomes, the wheat and
barley chromosomes and the sorghum and millet chromosomes (70, 127, 130).
The breakage and fusion of rice linkage segments to create the different cereal
chromosomes are reminiscent of the chromosome evolution of the holocentric
chromosomes, which are the closest relatives of the cereals (116, 139). The rushes
and sedges possess holocentric/polycentric chromosomes with many sites along
their chromosome length for microtubule attachment. Such chromosomes natu-
rally fragment to create smaller viable chromosomes. In hybrids between parental
lines carrying the original larger chromosomes and these small, fragmented chro-
mosomes, the large and small chromosomes align during meiosis, which suggests
that these species are very adept at rearranging their chromosomes.

A large number of more detailed comparative mapping studies have now been
undertaken (50, 56–59, 84, 125, 134, 149, 166–168, 179, 183). In essence, these
studies confirm the basic framework outlined previously (127, 130). The gene or-
der of chromosome regions covering several megabases have also been compared
and indicate a high level of conservation (25, 60, 68, 85, 100, 102). However, it
is also apparent that genes can be “transposed” to other regions, that they have
become duplicated or deleted, or that they have diverged significantly. The com-
parative analysis based on linkage segments provides a framework for gene order;
however, there are imperfections in this framework. The more detailed analyses
indicated that in maize, for example, there have been inversions of regions and
some of the linkage segments can be subdivided further. Analysis of these translo-
cations and other gross rearrangements will be helpful in further classifying the
relationships between the cereals (98).



MOORE C-1

F
ig

ur
e 

2
C

om
pa

ris
on

s 
of

 t
he

 c
er

ea
l 

ge
no

m
e 

ev
ol

ut
io

n 
ba

se
d 

on
 r

ic
e 

lin
ka

ge
 s

eg
m

en
ts

. 
(R

1–
R

2)
 r

ic
e 

ch
ro

m
o-

so
m

es
 d

is
se

ct
ed

 in
to

 li
nk

ag
e 

bl
oc

ks
 (

R
1a

, R
1b

, e
tc

);
 1

0 
(M

1–
M

10
) 

m
ai

ze
; 7

 (
W

1–
W

7)
 w

he
at

, b
as

ed
 o

n 
th

e 
lin

k-
ag

e 
m

ap
 o

f 
th

e 
D

 g
en

om
e;

  
9 

(I
–I

X
) 

fo
xt

ai
l m

ill
et

; 
 1

0 
(S

1–
S

10
) 

so
rg

hu
m

; 
an

d 
8 

(1
–8

) 
ba

si
c 

su
ga

rc
an

e 
ch

ro
m

o-
so

m
es

 r
ep

re
se

nt
ed

 a
s 

lin
ka

ge
 s

eg
m

en
ts

 o
n 

th
e 

ba
si

s 
of

 t
he

 c
on

se
rv

at
io

n 
of

 g
en

e 
or

de
r. 

C
on

ne
ct

in
g 

lin
es

 in
di

ca
te

du
pl

ic
at

e 
se

gm
en

ts
 w

ith
in

 t
he

 m
ai

ze
 c

hr
om

os
om

es
. 

T
he

 d
es

ig
na

tio
n 

of
 t

he
 s

or
gh

um
 a

nd
 s

ug
ar

ca
ne

 l
in

ka
ge

gr
ou

ps
 h

as
 v

ar
ie

d 
be

tw
ee

n 
la

bo
ra

to
rie

s 
an

d 
pu

bl
ic

at
io

ns
. 



P1: FMF+FQK/FPO P2: FJS

March 16, 2000 5:57 Annual Reviews AR099-08

?
CEREAL CHROMOSOME STRUCTURE 203

The Maize Genome

Maize and sorghum are members of the Andropogoneae tribe consisting of over
900 species. Of more than 500 species analyzed from this tribe, 90% of the species
possess a chromosome number that is a multiple of five. A basic number of nine
occurs sporadically throughout the tribe. Consistent with this, the ten chromo-
somes of maize could be divided into two sets of five chromosomes, based on
the linkage segment analysis (86, 131) (Figure 2, see color plate). The two sets
of five chromosomes possess a different arrangement of the linkage segments.
The maize chromosomes are divided into a set of the largest and a set of the
smallest chromosomes. Moreover, the chromosome arms of one set are all larger
than the corresponding homoeologous arms in the other set (Figure 3, see color
plate). The two ancestral genomes of maize diverged some 20 mya, and one of
the genomes is more closely related to sorghum, which diverged some 16 mya
(72). The allotetraploidization took place some 11 million years ago (72). If the
structure of the ancestral progenitor genomes of maize were similar to other small
genomes (Arabidopsisand rice) studied to date, most of the repetitive sequences
would be localized in the pericentromeric regions with the genic regions contain-
ing few repetitive elements. Bennetzen and colleagues have indicated that most of
the major expansion of maize genome has taken place in the past 3 million years
and has been intergenic (150). Since tetraploidization, it is unlikely that there has
been preferential expansion of one of the sets of chromosomes. Thus, one set of
chromosomes must have already possessed larger chromosomes than the other set.

The segmental relationship of the two chromosome sets of maize in which ho-
moeology relationships are confined to chromosome arms generates a “circular
organizational relationship” based around the centromeres (Figure 3). Such an ar-
rangement is distinctive but not unique to plants. It bears a striking similarity to
the chromosome relationships of translocation heterozygotes observed in diploid
OenotheraandRhoeospecies (44). Their homologous chromosomes can be or-
dered into two sets, one structured as A◦B, C◦D, E◦F (◦ being the centromere) and
the other set as F◦A, B◦C, D◦E. At meiosis the homologous chromosomes will
pair as a ring or a chain. SomeOenotheraspecies possess two sets of, for example,
A◦B, C◦D, E◦F chromosomes and will pair as homologous chromosome pairs (bi-
valents). F1 progeny of two such ring-pairing species can occur and can undergo
spontaneous amphidiploidy (45). Some 60 years ago, prior to any knowledge of
its genome structure, cytogenetists considered the possibility of maize being a
translocation heterozygote (28). Thus maize could be the amphidiploid of a F1 hy-
brid between two related ring-pairing (translocation heterozygotes) species. Our
knowledge of the structure of the maize genome does not rule out this possibility.
This event would have diploidized the two differently structured haploid genomes
that were originally capable of recombining. McClintock and others reported non-
homologous chromosome pairing in maize (75, 76, 119). From our knowledge of
the structure of the two sets of five chromosomes, this nonhomologous pairing can
be reinterpreted as pairing between homoeologous segments derived from the two
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ancestral genomes. It is also consistent with the observations that there has been
shuffling of genes between the homoeologous segments (72). Gaut & Doebley
also observed from the sequence divergence of pairs of genes mapping on homoe-
ologous segments that the genes fell into two classes, which is consistent with
the hypothesis that they were derived originally from two diverged genomes (72).
Translocation heterozygotes have been observed to have an unusual behavior of
their centromeric heterochromatin regions during prophase. During early meiotic
prophase in most species, the telomeric heterochromatin aggregates together into
a bouquet that results in the intimate alignment (synapsis) of chromosomes. In
translocation heterozygotes, the centromere heterochromatin also fuses as a single
site or chromocenter during meiotic prophase (39). The aggregation of centromeres
of paired bivalents and some knobs (neocentromeres) has also been observed in
maize at meiotic prophase (75).

There has been some discussion as to whether there is homoeology between
maize chromosome 3, maize chromosome 10, and rice chromosome 12, as some
groups have failed to cross-map any markers between these regions in particular
segregating populations (179). However, researchers using different segregating
populations have identified markers mapping to both the centromere regions of
maize 3 and maize 10 (57). This group of markers (includingUMC18) mapping
on both chromosomes is also located on rice chromosome 12. It is not the rela-
tionship of maize 3 and maize 10 that is unclear, but whether there is a duplicate
region for maize 4S, which has homoeology with rice chromosome 11. This maize
chromosome arm carries a large number of resistance genes and storage proteins.
Disease-resistance genes are subject to rapid evolution. As a class of genes they
tend not to reflect conservation in gene order (109). Many of these genes prob-
ably have diverged significantly from those of other species and probably from
the duplicate region in maize. However, there are eight RFLP loci from maize 4S
duplicated on 7S, which may indicate an ancient relationship (86) (Figure 3).

Centromeres, Telomeres, and Chromosome Evolution

Comparison of the location of the junctions of the linkage segments in the different
cereal genomes, in particular rice (156), indicates that the borders fall in centromere
and telomere regions (133). The region in one species is a centromere site and in
another species a telomere site. Moreover, telomeric heterochromatin in maize,
rye, wheat, and Bromus can, under certain conditions, function as neocentromeres
(reviewed in 133). Centromere/telomere sites have been the major focus of rear-
rangements, probably indicating why the markers flanking these regions exhibit
a loss of gene order. The structure of the maize genome indicates the importance
of centromeres and telomeric regions in the evolution of its genomes (Figure 3).
Because the centromeric sites have been subject to breakage and fusion events, the
comparative relationship of specific centromere and telomere sites across species
remains unclear. Among the cereals, the locations of centromere and telomere
sites have been conserved at the gross level. Thus the potential location of these
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structures is not random but rather is limited to a number of sites. In mammals,
in contrast, the locations of centromere sites have not been found to be conserved
across species (126).

The rice genome has been a useful tool for determining the structural relation-
ships of the cereal genomes. One explanation is that its structure is similar to that of
the ancestral progenitor genome. An alternative explanation is that it is the diploid
with the highest basic number of chromosomes that has been analyzed. The rice
genome reveals more potential (centromere and telomere) sites involved in break-
age and fusion events of chromosomes than other species. However, still unclear is
how and why certain sites in the cereal genomes are activated as centromere sites
in some species and not in other closely related genomes and how this activity is
modified. This issue is important in the debate about whether sorghum with its 10
chromosomes is an ancient tetraploid (38). In situ hybridization shows that five of
the sorghum centromeres are distinct from the other five sites. It has been argued
that this observation supports the ancient tetraploid concept (81). However, com-
parative mapping with rice indicates that the gene order in the sorghum genome is
similar to that of rice (57). There is no clear duplication of the sorghum genome
with respect to the rice genome. Sorghum chromosomes are metacentric but
share homoeology with whole or parts of chromosome arms of maize (57). Thus,
active centromeric sites do not map comparatively between sorghum and the two
maize chromosome sets. The lack of knowledge on how sites are activated or sup-
pressed during chromosome evolution makes it difficult to interpret the different
sorghum centromere structures.

CHROMOSOME PAIRING

Chromosome pairing is the process by which homologous chromosomes (termed
homologues) start in a premeiotic somatic nucleus randomly organized with re-
spect to each other but end up during the pachytene stage of meiotic prophase
in close association. Homologue pairing is important for the correct segregation
of the chromosomes to gametes. The process of bringing homologues together
involves their reciprocal recognition, coalignment, and synapsis. The term chro-
mosome pairing has often been applied to one or more of these individual stages.
An S phase occurs between premeiotic interphase and meiotic prophase in which
the chromosomes are replicated, generating two sister chromatids. To that effect
the intimate association of the homologues, which are composed of sister chro-
matids, is facilitated by a protein structure, the synaptonemal complex (177a). A
protein structure, the lateral element, is formed by the two sister chromatids of
each homologue. The lateral elements of each homologue are then aligned and
associated by a third protein structure forming between them.

Chromosome-pairing studies provided early indications as to the genome rela-
tionships between polyploid species and diploid relatives. In essence, these were
the first comparative genomic studies. Conversely, have the recent comparative
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genomic studies contributed to our understanding of the chromosome-pairing pro-
cess? As described, these studies reveal that two chromosome structures have been
important in cereal evolution, the telomeres and the centromeres. Both chromo-
some structures in plants such as wheat, rye and barley are located on the nuclear
membrane. In interphase cells the centromeres are at one pole of the nucleus and the
two chromosome arms extend to the other pole where the telomeres are dispersed
over the membrane (1, 9, 10). This chromosome organization has been described
as a “Rabl” configuration (144a).

In Diploids

Early studies indicated an important role for telomeres/subtelomeric regions dur-
ing the pairing process. Subtelomeric heterochromatin knobs are clearly visible
in interphase nuclei in rye (27, 164). Light microscopy revealed that early during
meiotic prophase, the telomere regions of diploid species form a single cluster or
bouquet. Meiocytes visualized in premeiotic interphase exhibited no association of
telomeric regions. This is consistent with the observations made onLilium longi-
florum. This species’ chromosomes undergo a preleptotene contraction and be-
come visible. There was no clear association of chromosomes at this stage, which
suggests that there is no premeiotic alignment in this diploid species (172, 173). The
intimate alignment of rye chromosomes during meiotic prophase was assessed by
spreading and squashing meiocytes at the zygotene stage to reveal their synaptone-
mal complex structures (77). The initiation of synapsis occurred after the bouquet
had formed. The telomere regions are among the first sites to undergo synapsis.
However, many other sites along the chromosome are also involved in synapsis of
the bivalents (pair of homologues). The intimate alignment process could not be
explained simply by zipping up of these initiation sites from the telomeres (77).
The sizes of heterochromatin knobs in rye can vary greatly. Synapsis between such
homologous chromosomes differing in heterochromatin knob size is largely unaf-
fected in rye (80). One lateral element was slightly longer than the other, which
resulted in an unpaired telomeric end. However, there was only slight reduction
in the level of recombination. Importantly, the length of the lateral elements did
not correlate directly with the difference in size of the chromosomes. This is more
marked in hybrids between two Lolium (diploid) species, which differ by 50% in
their chromosome size (94). These different-sized chromosomes (homoeologues)
intimately associate, which results in the alignment of lateral elements of sim-
ilar size. The synapsed structures resemble perfectly paired bivalents. There is
no indication of a substantial correction to the lateral element length during the
process of synapsis. Thus the chromosomes, which are substantially different in
size, produce only lateral elements of a length similar to the chromosome with
which it will become associated. The implication is that the pair of chromosomes
that are going to be synapsed as a bivalent are already associated at more than one
site prior to synapsis. If the searching process for chromosomes took place after
lateral elements had been formed, synapsed chromosomes with different lengths
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of lateral elements would be observed. Two chromosome structures, telomeres
and centromeres, both located on the nuclear membrane, could be involved in the
initial chromosome searching process. The clustering of the telomeres to form a
bouquet brings the telomeres together. Data presented by Martinez-Perez at the re-
cent 9th Botanical Congress indicates that in diploidTriticumandAegilopsspecies
the centromeres also associate in pairs at this stage (118). Other sites along the
chromosome arms would also have to be involved. It is unclear how these sites
search and recognize each other without an elaborate system of motors and pul-
leys moving the chromosome sites around the nucleus. An attractive hypothesis
proposed by Cook is that these sites are genes that are being associated at tran-
scriptional sites (40). Homologous genes would be transcribed by being looped
out to the same transcription factory, thereby enabling association to occur. Thus,
chromosomes of different sizes but possessing similar gene orders would associate
through their telomeres and centromeres on the nuclear membrane and the genic
regions in the transcriptional factories.

In Autotetraploids

Synaptonemal complex spreading studies have also been undertaken on autote-
traploids ofTriticum monococcum(the A genome donor of hexaploid wheat)
and autotetraploids of rye (Secale cereale) (79, 152). These plants contain seven
basic chromosomes with four homologous chromosomes for each chromosome
group (i.e. 28 chromosomes in all). The spreading data indicated that the chromo-
somes could synapse as seven cross-like structures. Thus, although the telomere
regions had the potential to associate with three other homologous regions, they
only formed pair-wise associations. This was the case for all the regions along
the chromosome arm except for one site halfway along the chromosome. Most
sites on theTriticeae chromosomes can only synapse in pairs, and these asso-
ciations are with the same chromosome. Only a single site on the chromosome
engages in multiple interactions. Martinez-Perez also observed that centromeres
associate premeiotically in autotetraploids of theTriticeaespecies, reducing to
approximately seven sites during meiotic prophase (118). The implication is that
the centromeres of four homologous chromosomes associate, forming cross-like
structures of synapsed chromosomes.

In Allopolyploids

Synaptonemal complex spreading studies on allotetraploids and allohexaploids
(species possessing two or three sets of related but not identical genomes) includ-
ing allotetraploidAegilopsspecies sharing D genomes (42),Aegilopsspecies shar-
ing U genomes (41), allotetraploid oats, and allohexaploid oats (96) all show that
the vast majority of chromosomes are synapsed as bivalents. Multivalent struc-
tures are occasionally observed at low frequency. A study on hexaploid wheat
also reported predominantly bivalent formation (165). The regions adjacent to
the telomeres were among the first to synapse. However, other sites were also
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involved in initiating synapsis, producing bivalent structures resembling beads on
a necklace. Thus, although chromosomes have the potential to associate with three
other chromosomes (two homoeologues and an homologue), they associate with
their homologue to form a bivalent structure. In this case, centromere regions are
associated as pairs at meiotic prophase in hexaploid wheat (118). Thus the homoe-
ologous and homologous centromere regions are distinguished in the allotetraploid
and allohexaploid situations and resolve as pairs.

Bennett and colleagues showed that the length of meiotic prophase is shorter
in polyploids compared to their diploid progenitors, which is the opposite from
what would be expected (20). The more genomes or chromosomes are present, the
shorter the meiotic prophase, and hence the time required to sort them. The implica-
tion is that the chromosome-sorting process in autotetraploids and allotetraploids
has been extended outside meiotic prophase. In that regard, it is now apparent
that centromeres associated in pairs in floral tissues of all theTriticeaeallopoly-
ploids studied including hexaploid wheat (118). Thus centromere association is
occurring prior to telomere association in these species (9, 10, 117). However,
the diploid progenitors do not associate their centromeres until meiotic prophase
(118). Thus, polyploidization results in the early association of centromeres. This
is consistent with the early studies by researchers who, when treating hexaploid
wheat anthers with colchicine prior to their meiocytes being in meiotic prophase,
observed an effect on chromosome pairing at metaphase I (17, 52–54, 169). The
observation that centromeres are associated in pairs during floral development in
hexaploid wheat and wild polyploid relatives but not in their diploid progenitors
suggests that the chromosome-sorting process was initially taking place at the
centromeres in polyploids. Pairs of homologous chromosomes were fluorescently
labeled in hexaploid wheat and their behavior followed from early floral (anther
development) through to meiotic prophase (118). These studies were undertaken
using anther sections and confocal microscopy so that intact cells could be ana-
lyzed (7). The sections enabled the cells to be clearly classified. The study showed
that early in anther development prior to the meiocytes being clearly recognizable
from tapetal cells, some seven days prior to meiotic prophase, the centromeres in
the developing anther associate in pairs (8, 10, 118). By five days prior to meiotic
prophase, these associations are becoming homologous associations. Thus, the ho-
mologous chromosomes at this stage form a V-configuration. By three days prior
to meiotic prophase, the stage at which meiocytes are in premeiotic interphase,
90% of the homologous chromosomes being visualized were associated via their
centromeres (10). During premeiotic interphase, the homologous chromosomes
colocalize along their length. However, the telomeres of the homologues do not
associate as pairs (118). The meiocytes progress through S phase. The telomeres
cluster to form a bouquet. The homologous chromosomes separate along their
length and are associated by the centromeres and telomeres. The homologous
chromosomes are visualized as sister chromatids at this stage (118). The sister
chromatids then associate and the homologous chromosomes associate simultane-
ously. The homologous chromosomes are intimately aligned and then the telomere
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bouquet declusters (118). A schematic representation of the chromosome pairing
process in polyploid and diploidTriticeaeis shown in Figure 4 (see color plate).

Hexaploid and tetraploid wheats (69, 90) and rice have not suffered major re-
arrangements following polyploidization. The maize genome, on the other hand,
evolved through breakage and fusion events of centromeres and telomeres, fol-
lowed by tetraploidization and then by further rearrangements (Figure 3). It is
not yet known whether maize centromeres associate premeiotically, as happens in
hexaploid wheat and polyploidAegilopsspecies. However, visualizing the maize
heterochromatin knobs, Cande and colleagues showed no premeiotic association
of these sites (46). This implies that maize chromosomes do not align along their
length during premeiotic interphase. During the leptotene and zygotene transi-
tion of meiotic prophase, maize telomeres cluster to form a bouquet, and then
the heterochromatin knobs associate (16, 46). The homologues intimately asso-
ciate along their length with the telomeres still clustered (75, 76). If centromeres
in maize associate premeiotically, chromosome behavior in maize and the timing
of the telomere bouquet would resemble that described for hexaploid wheat lines
lacking thePh1 locus.

The Ph1 Locus

The requirement for breeding purposes to introgress chromosome segments carry-
ing beneficial traits from wild relatives into polyploids such as wheat encouraged
researchers to study the genomic relationships of wheat (Triticum) and its wild rela-
tives (Aegilops) through chromosome pairing. F1 hybrids between diploid progen-
itors of hexaploid wheat or wild relatives are capable of pairing and recombining
(14, 181). However, polyploidization and the subsequent premeiotic association
of centromeres promotes homologous pairing and thereby reduces the ability to
introgress chromosome segments from wild species. Both Riley and Okamoto ob-
served that by deleting both 5B chromosomes, a level of homoeologous pairing
could be induced (140, 146). Sears identified a deletion (ph1b) of the 5B chromo-
some that also produced the same effect (155). A deletion of the same region of 5B
causes a similar effect in tetraploid wheat. Researchers termed the deleted locus
Ph1. Sears noted that the fertility of the line was around 30% of that of the wild-type
wheat (155). This implied that the majority of pairing configurations observed at
metaphase I in this line resulted in infertility, possibly through gamete abortion. A
number of studies have been undertaken to characterize the effect of thePh1locus.
Analysis of anther sections during floral development revealed that, in common
with hexaploid wheat (and its polyploid relatives), centromeres associated during
floral development in the absence of thePh1locus (118). However, the centromere
structure is affected when thePh1locus is deleted (9). The nature of the premeiotic
centromere associations has been determined. In similarly staged sections, when
90% of the homologues were associated via their centromeres in the presence
of thePh1 locus, only 30% of the homologues were in the absence of the locus
(10). This is also the level of fertility of theph1bline (155). Analysis of the wild



MOORE C-3

F
ig

ur
e 

4 
D

ia
gr

am
 o

f 
ch

ro
m

os
om

e-
pa

iri
ng

 e
ve

nt
s 

be
fo

re
 a

nd
 d

ur
in

g 
m

ei
os

is
 i

n 
po

ly
pl

oi
d 

an
d 

di
pl

oi
d 

w
he

at
s.

 P
ol

yp
lo

id
 a

nd
 d

ip
lo

id
A

e
g

ilo
p

ss
pe

ci
es

 w
ith

in
 t

he
 Tr
iti

ce
a

e
al

so
 e

xh
ib

it 
si

m
ila

r 
pa

iri
ng

 t
o 

th
e Tr

iti
cu

m
sp

ec
ie

s.
 



P1: FMF+FQK/FPO P2: FJS

March 16, 2000 5:57 Annual Reviews AR099-08

?
210 MOORE

relatives of wheat reveals that none of the chromosomes tested carry loci that can
compensate for the loss of the 5B chromosome in hexaploid wheat (14). In the
absence of thePh1 locus in wheat, centromeres still associate premeiotically as
they do in polyploidAegilopsrelatives (117, 118). ThePh1locus on chromosome
5B raises the fertility of wheat. It is quite possible therefore that the current 5B
allele was not present in the original hybridization but was a mutation that arose
and was then selected because it conferred increased fertility.

The timing of formation of the telomeric bouquet in theph1bline is also delayed
in meiotic prophase, thereby lengthening the whole stage (19, 118). The level of as-
sociation between homologues via the centromeres observed during premeiotic in-
terphase may increase further during meiotic prophase until the telomeric bouquet
is formed. The change in timing of the telomeric bouquet will change the timing of
synapsis, which ultimately could affect the recombination between chromosomes
in the presence and absence of thePh1 locus. ThePh1 locus appears to indirectly
affect synapsis (78). Gillies noted that it was difficult to prepare synaptonemal
complex spreads from wheat carrying thePh1 locus (78). Most preparations re-
vealed short fragments of associated lateral elements. This is consistent with the
observation that sister chromatids and homologues are associating at the same
time, implying that lateral element formation is not complete before the central
element formation occurs. In wheat hybrids in which only homoeologous chro-
mosome pairing could occur, the chromosomes were correctly synapsed in the
presence or absence of thePh1 locus (78). The homoeologous chromosomes dif-
fer in size, yet synapse via lateral elements of similar length. This implies that the
chromosomes are associated prior to synapsis, which is consistent with the occur-
rence of centromeres in pairs and telomeres in the bouquet. Analysis of pairing
in autotetraploids described above indicates that centromeres can be involved in
multivalent formation (118). The observation that centromeres are in pairs in the
Ph1mutant is consistent with a low level of chromosomes present as multivalents
at metaphase I. In theph1bline, only four chromosomes per nucleus on average
are engaged in higher-order associations; the rest are bivalents or univalents.

Recombination and the Ph1 Locus

Deleting one of the telomere regions of the pair of homologous chromosomes
results in the failure of the pair of homologous chromosomes to recombine in
hexaploid wheat and therefore to be found associated at metaphase I (43, 113).
Deleting the telomere regions of both chromosomes to the same extent does not
reduce recombination between homologues in hexaploid wheat (113) nor does the
possession of nonhomologous centromeres, provided the telomere/subtelomeric
regions exhibited homology (43). ThePh1locus affects recombination (55, 61, 78,
114). In wheat hybrids in which homoeologous chromosomes had synapsed in the
presence of thePh1locus, the chromosomes failed to recombine (78). Even homoe-
ologous interstitial segments within a homologous chromosome fail to recombine
despite the occurrence of recombination within the homologous segments (113).
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However, in the absence ofPh1 locus, homoeologous chromosomes and intersti-
tial homoeologous segments within homologous chromosomes recombine. This
implies that either thePh1 locus is a complex containing genes that affect the
premeiotic alignment through centromere association and other genes affecting
recombination, or that the high level of association of homologues during floral
development leads to an early association of telomeres and synapsis. The expres-
sion levels of genes preventing homoeologous recombination may be comparable
in similar staged floral tissues of wheat with and without thePh1locus. However,
at the time the telomeric bouquet and chromosome synapsis occur in wheat lacking
thePh1locus, the expression levels may be in decline, resulting in homoeologous
recombination.

Pairing Models

Three hypotheses have long dominated the field of cereal chromosome pairing.
How do these hypotheses stand in the light of recent data?

As researchers studying pairing in autotetraploid plants were to show, the chro-
mosomes associate in these species as multivalents that later resolve as bivalents
by metaphase I. Researchers at Carlsberg performed some of the initial studies
using Bombyx (silkworms), and observed the initial multivalent formation and
later bivalents. They proposed that a similar mechanism operated in the case of
allopolyploids, such as hexaploid (bread) wheat. The initial studies seem to sup-
port this proposal (88, 93). However, a more detailed analysis by Holm revealed
mostly bivalent formation (89). Although Holm concluded that “most chromo-
somes are at mid zygotene present as partially paired bivalents and only few have
engaged in multiple associations,” he nevertheless argued that multivalent forma-
tion and their resolution were important (89). Thus it is generally perceived in the
literature that chromosomes in hexaploid wheat are involved in a searching pro-
cess at synapsis through associating at a number of sites along their chromosome
arms. This hypothesis is, however, problematic. First, most multivalents claimed
from analyses of synaptonemal complexes were based on a single site association
between two chromosomes that were synapsed as partially paired bivalents with
another partner. If there is generalized searching operating, it would be expected
that a number of sites would be involved along their chromosome arms visualized
as multiple interactions. This is not the case. Moreover, the process of squashing
and spreading to analyze the synaptonemal complex structures will result in some
chance associations between partially paired bivalents. Clearly, these two types of
association need to be differentiated. Autotetraploids of the progenitors of wheat
do not exhibit interstitial multivalent associations (as described above) between
identical chromosomes (79). Thus, why would multivalent associations at synapsis
occur between nonidentical and not between identical chromosomes? Subsequent
synapsis studies of an autotetraploid of rye (152) andTriticum monococcum(79)
show that one site is engaged in multivalent associations. Recent data indicate that
such sites are now likely to be the centromere regions. However, centromere sites
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are not engaged in multiple associations at meiotic prophase in allopolyploids such
as hexaploid wheat. They associate mostly in pairs early in floral development and
remain in pairs through meiotic prophase (118). Importantly, a number of spreads
of partially synapsing wheat chromosomes show no associations that can be in-
terpreted as multivalent formation (89). If all chromosomes had to go through the
multivalent formation as part of synapsis, multivalents would be observed in all
spreads. The close polyploid relatives of hexaploid wheat,AegilopsandAvena,
have recently been shown not to exhibit multivalent formation at synapsis but
simply bivalent formation (41, 42). Moreover, as stated previously, homoeologous
chromosomes are synapsed by lateral elements of similar lengths, which implies
that these chromosomes were already committed to pair prior to completion of lat-
eral element formation (78). All data indicate that chromosomes in hexaploid wheat
synapse as bivalents, as is in the case for its wild polyploid (Aegilops) relatives.

Early studies onDrosophilaobserved that chromosomes associate in somatic
tissues during embryo development (123). Based on theseDrosophilaobserva-
tions, Feldman proposed that most plant species associate their chromosomes
premeiotically. Because he had observed the presence of univalents, multivalents
and interlocking of bivalents in hexaploid wheat with increased doses of the 5BL
arm, Feldman argued that the presence of thePh1 locus on 5B suppresses this
premeiotic chromosome pairing “causing random distribution of chromosomes in
the premeiotic nucleus.” Premeiotic association was concluded to be partially sup-
pressed at two doses of thePh1, which eliminated pairing between homoeologues
and led exclusively to homologous pairing at meiosis. The presence of extraPh1
doses even suppressed homologous chromosome pairing. Feldman and colleagues
therefore used squashed preparations to assess whether there was somatic chro-
mosome association in root cells (64, 65). This strategy would provide evidence
of somatic association leading up to premeiosis, which then would be disrupted
premeiotically by thePh1 locus. From the squashed preparations, Feldman and
colleagues concluded that there was somatic chromosome association in roots.
From further studies using colchicine treatment, they concluded that microtubule
interactions with the centromeres were involved in this somatic pairing (12, 13).
The cloning of sequences at centromeres now permits the question of whether cen-
tromeres associate in roots to be addressed (8). There is no evidence for centromere
association in roots nor association of homologues as proposed (87, 118). Further-
more, homologous chromosomes are not randomly organized in the premeiotic
nucleus but homologues are associated via their centromeres (117, 118). There-
fore, although the principle that association of homologues involved centromeres
proved to be correct, current data do not support the experimental evidence on
which this proposal was based.

Finally, Watanabe proposed from studies on polyploid Chrysanthemum that
obligate bivalent formation in polyploids is achieved by initiating chromosome
pairing at two sites (174). He concluded that there would be two sites under
independent and fundamentally different genic control and that the pairing of
one site always precedes the pairing at the other. These proposals are entirely
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consistent with chromosome behavior of theTriticumandAegilops(10, 117, 118).
The analyses described above of autopolyploids and allopolyploids suggest that
centromeres and telomeric regions are these two sites.

CONCLUDING REMARKS

In summary, centromeres and telomeres have been important in influencing cereal
chromosome evolution and the pairing of cereal chromosomes. The development
of new vector systems, particularly cereal artificial chromosomes for the biotech
industry, is likely to promote centromere- and telomere-based studies. The better
understanding of the structure of this regions and the proteins that interact with
them will, in turn, help chromosome-pairing studies. The future characterization
of the Ph1 locus itself may well identify some of the key proteins/factors that
interact at these sites.
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