CHAPTER TWO

tion error will decrease and then increase as model complex-
ity increases—with respect to reliability of prediction, there is
an optimal level of model complexity.

Linhart and Zucchini's approach is consistent with almost
all quantitative work in this area that suggested the optimal
model size is much smaller than intuition dictates. Ludwig
and Walters (1985) obtained better predictions about man-
agement actions from a non-agestructured model, even
when the data were derived, by simulation, from an age-
structured model. That is, the "wrong” model can do better
than the “right” model in prediction if’ parameters must be
estimated. Similarly, Punt (1988) found very simple models
of fisheries management, which often ignored substantial
amounts of data, outperformed more complex models when
parameters had to be estimated and decisions made.

When the objective is something other than prediction
accuracy, the complexity of the optimal mode may be quite
different. In Chapter 10, we show a fisheries example where
a complex model fits the available data no better than a
simpler model. However, the uncertainty in the sustainable
harvest is quite low for the simple model, but high for the
complex model. In this case the simple model under-repre-
SCTIES Llhe uncertainty, and we believe that a more complex
model provides a better representation of the uncertainty,

The complexity of the optimal model will depend on the
use of the model and on the data. Part of the work of the
ecological detective is to iterate between alternative models,
to understand their strengths and weaknesses, and to recog-
nize that the most appropriate model will change from ap-
plication to application.
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CHAPTER THREE

Probability and Probability
Models: Know Your Data

DESCRIPTIONS OF RANDOMNESS

The data we encounter in ecological settings involve differ-
ent kinds of randomness. Many ecological models describe
only the average, or modal, value of a parameter, but whf:n
we Lumpnru models to data, we need methods f'url‘ determin-
ing the probability of individual observations, given a spe-
cific model and a value for the mean or mode of the param-
eter. This requires that we describe the randomness in the
data. Similarly, when we build a model and want to generate
a distribution of some characteristic, we first need a: way tf:
quantify the probability distribution associated with this
characteristic. This involves understanding both the nature
of your data and the appropriate probabilistic descri}?Lions.

We assume that readers of this book are familiar with the
normal or Gaussian distribution (the familiar “pell-shaped
curve™). However, many of the distributions in nature are
not normal. The purpose of this chapter is to inlrﬂdllFt
ideas about probability, describe a wide range of useful
probability distributions (and consider bi.ﬂluginful processes
that give rise to these distributions), and provide you with
the tools you need to use these distributions in your work.
We begin with advice on data and then review the_ c?ncepts
of probability. After that, we describe a number Ut, rhﬂ"rren}
probability distributions and some of their ecological appli-
cations. We close with a description and illustration of Fhe

“Monte Carlo” method for generating data and testing
models.

39



CHAPTER THREE

A modest university library will have fifty to one hundred
textbooks on probability that cover the material we treat
here in more detail. So why do we bother? There are two
main reasons, First, we want to motivate you to be interested
in other than normal distributions. Second, we want to pro-
vide enough detail so that when the distibutions are used
in subsequent applications, the book is selfcontained, We
suggest that yvou skim the distributional information now
and return to it as needed in later chapters.

ATWAYS PLOT YOUR DATA

Ecological systems are complex. For this reason, we can
hope to observe only a very small fraction of the possible
variables. The largest field research programs barely scratch
the surface of what could be measured. Indeed, the key
questions in the design of ecological research are what ex-
periments to perform, what to measure, and how to mea-
sure it. Whole new avenues of research have been devel-
oped based on new measurement methodologies such as
radiotracking, starch gel electrophoresis, DNA fingerprint-
ing, and individual identification of animals by natural
marks.

When confronting alternative models with data, we must
decide not only which models, but also which data to use. In
practice we often observe more than one feature of the eco-
logical system. For example, population surveys may be con-
ducted in many different years, and these surveys provide
the major source of information for the model. However, in
some years there may be additional direct measurements of
birth or death rates.

So what is the first step? Plot your data. Get to know them
by using standard computer graphic routines to fit various
curves (linear, polynomial, logarithmic, exponential). When
there are more than two variables, plot the data in many
ways and look for correlation. Think about plausible func-
tional relationships.
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Ficure 3.1. The probability of the event A is the area of
A, however area might be defined, divided by the area of
& which is the collection of all possible outcomes of the
experiment.

EXPERIMENTS, EVENTS, AND PROBABILITY

In probability theory, we are concerned with the occur-
rence of “events” that can be thought of as outcomes of
experiments. The probability of an event A is denoted by

Pr{A} = probability that the event A occurs. {3.1)

It is helpful to think of probability in the following way.
First, we imagine all the possible outcomes of the experi-
ment and call this collection of outcomes 8. A smaller col-
lection of outcomes, A, has probability defined as the “area”
of A divided by the “area” of §, with “area” suitably defined
(Figure 3.1). Particular probability models give ditferent
definitions of what “area of A" really means. In any case,

Pr{A}= probability that the event A occurs
= (area of A)/{area of §). (3.2)

Continuing to use this figure and the definition of proba-
hility in Equation 3.2, we see that the probability that one of
two events A or B occurs is
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Pr{d or B} = Pr{d} + Pr{B}-Pr{A and B). (3.3)

In the future, we will use Pr{A,B} for the probability that
both A and B occur.

Conditional Probability

Referring again to Figure 3.1, suppose that we know that
event A occurred, What is the probability that B occurred
given the knowledge about A? This kind of question arises
all the time in ecological detection as we use models o
make predictions about data and data to make inferences
about different models,

If A occurred, then the collection of all possible outcomes

of the experiment is no longer §, but must be A. From the
definition Equation 8.2,

Pr{B occurred, given that A occurred}
= (area common to A and B)/(area of A). (3.4)

We use Pr{BIA} to denote the probability that B oceurs given
that A occurs. Dividing the numerator and denominator of
thf& right-hand side of Equation 3.4 by the area of § and
using the new notation, we have

Pr{BIA} = Pr{A,B}/Pr{A}. (8.5)

By analogy, since A and B are fully interchangeable here, we
must also have i

Pr{AIB} = Pr{A,B}/ Pr{B). (3.6)

ge define two events as independent if knowing that one of
em occurred does nothing to change our idea about the

probability of the other one occurri T =
independent, ming. Thus, if A and B are

PriAlB} = Pr{4}  and  Pr{BIA} = Pr{B}. (3.7)

Using these in either Equation 3.5 or Equation 8.6, we see
that for independent events ,

Pr{A,B} = Pr{4} Pr{B}, (3.8)
42
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Equation 3.8 is often given as the definition of independent
events, but it is actually derived from the definition based
on conditioning.

Bayes' Theorem

The challenge in ecological detection (and all statistical
science, for that matter) is to determine how to use the in-
formation contained in data and Bayes’ theorem is a very
powerful method,

From Equation 3.6, we see that Pr{A,B} = Pr{AIB}Pr{8}.
Using this in Equation 3.5, we have

Pr{BIA} = Pr{A,B}/Pr{A} = Pr{AiB} Pr{B}/ Pr{4). (3.9)

The extreme left- and right-hand sides of this formula are
called Bayes’ theorem. It is most handy when there are a
number of possible but mutually exclusive outcomes H;, Ba,

. By, one of which must occur when A occurs. The natu-
ral generalization of Equation 3.9 is to ask for the proba-
bility that B; occurs given that A occurs (Figure 3.2), Follow-
ing the reasoning that led to Equation 3.9, you should show
that

M
Pr{BiA} = PrlAIB} Pr(B} | 2 Pr{AIBPr{B}.
f=1 (3.10)

Two hints: note that (1) the numerator on the right-hand
side is the joint probability A and B;, and (2) the denomina-
tor is the same as Ej-\r:l Pr{j’l,b}-}. What must be true about
this expression?

We now illustrate some of the nuances of conditional
probability with two examples (Bar-Hillel and Falk 1982),

Predator and Prey. lmagine a rabbit wandering through
the forest. If it comes within a critical distance of a predator
(e.g., a fox or coyote), there is a probability P, that the
predator will attack. In addition, suppose that the rabbit of-
ten does not observe the predator directly, but uses various
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Ficure 5.2, An illustration of Bayes' theorem For a case
in which, when event A oceurs, one of four other possi-
ble events B, . . ., B, may also ocour,

cues (e.g., scent) of the predator’s presence. Assume that P,
15 the probability that if the rabbit obtains such a signal, the
predator is within the critical attack distance. Once the rab-
bit obtains such a signal, what is the probability of an attack?
The answer is not P,P,, as tempting as it may seem.

In order to answer the question, we introduce events:

A = event of being attacked,

F' = event of predator present within the critical
attack distance,
§ = event of receiving the cue, (5.11)

so that the data are
Er{AlBY = P,
Pr{FIs} = P. (3.12)

The probability we wish to caleulate is
44
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Pr{attack, given the signal} = Pr{Al5}
= Pr{A,5}/Pr{5}. (313

Applying Bayes’ theorem,
PriAlS} = Pr{A,S}/Pr{S} = Pr{SIA} Pr{A}/Pr{S}. (3.14)

The key piece of information in this equation is Pr{S|A}, the
probability that a signal is obtained when an attack actually
does occur. This is not available from the given data and
(particularly if the predator is smart) could, in fact, be 0!
Thus, if the rabbit is a careless Bayesian, it may misjudge the
meaning of a cue.

Smith’s Children (Bar-Hillel and Falk, 1982). Smith has
two children. You meet Smith and a child who is a boy
What is the probability that the other child is also a boy?

There are two lines of reasoning about this problem. If
the sexes of the children are determined independently and
with equal probability, then by independence

Pr{second child is a boy | first child is a boy}
= Prisecond child is a boy} = 1/2 (3.15)

The second line of reasoning is the following. Before meet-
ing the first child, the possible events in Smith’s family are
{GG,GB,BG, BB}, where G denotes girl and B denotes boy.
The information that the child we met is a boy eliminates
GG as one of the possible events, so that given this informa-
tion, the possible events are 1GS,BG. BB}, With this line of
reasoning, if each family mix is equally likely, the probability
that the second child is a boy is 1,/3.

Clearly, these two lines of reasoning cannot be correct.
One approach is to forget about the problem, since “Both
arguments appear reasonable and both have been used in
practice. What to do about the contradiction? The easiest
way out is that of a formalist, who refuses to see a problem if
it is not formulated in an impeccable manner. But problems
are not solved by ignoving them.” (Feller 1971, 12, emphasis
added.)

45



CHAPTER THREE
The difficulty lies in how we use the information that one
of the children is a boy. We want to find
Pr{family type is BB | met child is a boy}
= Pr{family type is BB, met child is a boy}/
Primet child is a bov}. (3.16)

Allowing all four possible family types, we have:

Pri{meeting a boy,

Family type Prior probability given family type}

BB 1/ 1
Bz 1./4 1/2
L8] 1/4 1/2
G 1/4 0

Assuming independence of the met child and the family
type, the joint probability of family type and meeting a boy
15

Pr{family type is BB, met child is a boy}

: = (1/4) X 1 = 1/4,
Prifamily type is BG, met child is a boy}
= (1/4) % (1/2) = 1/8,

Pr{family type is GB, met child is a boy}

; = (1/4) % (1/2)= 1/8,
Prifamily ype is GG, met child is a boy}

= {l/4) x 0 =0,
50 that we have
Pri{met child is a boy} = 1/4 + 1/8 + 1/8 = 1/9,
and using this in Equation 3.16 we conclude that
Pr{second child is a boy | met child is a boy} = 1,2, (3.17)

Thus, the first line of reasoning is correct and the second is
not. We encourage you to think about what was wrong with
the second line of reasoning. In particular, does the fact of
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meeting a boy change the probabilities for the four family
t}'p{:S?

Random Variables, Distribution Functions, and Density Functions

A random variable 7 is one that can take more than one
value in which the values are determined by probabilities. If
the random variable takes discrete values, we write

PriZ = & = fi, (3.18)

where 0 = f, = 1 and X, f; = 1. For example, Z might take
the values 1,2, . . . 10, each with equal probability 0.1. Then
fi = 0.1 and 2i-1 fi is the probability that Z = z, which we
shall denote by F(z); Figure 3.3 illustrates this idea. F(z) 1s
called the cumulative distribution function. Cumulative dis-
tribution functions should have the following properties: (i)
as z— —o, Flz) = 0 (i) as 2 — oo, F{z) — 1; (iii) F(z) never
decreases as @ increases.

When the data are continuous variables, such as lengths,
weights, or time, we cannot write the probability distribu-
tions in the same way since z can take an infinite number of
values in any finite interval. In such a case, we begin with
the cumulative distribution function, also indicated by £F{z)
and which has the same interpretation,

Fizy = Pr{Z = z}. (3.1
An example of such a cumulative distribution function is

0 if z < 0,

A2 Sy 2% ife=0, (3.20)

which is called the “negative exponential distribution func-
tion” {Figure 5.4).

When Z is continuous, we can no longer speak of the
event 7 = =" Instead, we consider the chance that Z takes
a value in a small neighborhood Az of z and we can evaluate
it with the following logic (we encourage you to sketch out
this idea using Figure 3.4):
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Priz = Z=z+ Az
=Pr{Z=z+ Az} — Pr{Z=z}
= F{z + Az) — F(a). (3.21)

Gince Az is assumed to be a small value, we use a Taylor
expansion' of Flz + Az)

Flz+ Az)

R 1 .‘i l s 2

= Flz) + F'(z)Az + Ql' fzhifs )™ (3.29)
We scoop all the terms involving high powers of dz into the
single expression o{Az). This handy notation will be used in
other places in the book. Equation 3.22 becomes

Flz + Az) = F(z) + F'(z)Az + o{Az), {3.23)

and using this in Equation 3.21,

Priz = Z=z + Az} = F'(2)Az + ofA2). (3.24)

The derivative I (z) is called the probability density func-
tion and is denoted by the symbol f(z). For example, a con-
tinuous distribution might be used to represent the lengths
of animals in a population. When such a graph is drawn
using real data, it is often a histogram, where the ordinate is
the number of individuals falling in each length interval.
When it is represented as a continuous curve, the appropri-
ate label is f(z), which is interpreted as the frequency distri-
bution of outcomes. For the negative exponential distribu-
tion function, the probability density function is (Figure
3.4b)

flz) = re "™~ (3.25)

These ideas of probability can be nicely illustrated by a study
of predation (Box 3.2).

Wou are going to need six facts from calculus in order o completely
understand this chapter, They are given in Box 3.1,
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e

BOX 5.1
Tue Carcurus Facts You Neep For TH1S CHAPTER

1. Definition of the derivative:

dF : Flx + Ax) — Fix)
s Fix} = lim s, 50 e h

2, Derivative of the exponential function:

d
7 e = pe™

3. Exponential function as a limit:
. L
]IT'I'I,.I. _;:( 1+ _) = g~
1

4. Integral as a limit of a sum:
L
f h()dz = limy, o 2, A(z) Az,

where the summation goes from z=a to = bin steps of Az

5. Taylor expansion for a function of one variable:
1
Fix) = Fla) + Fla)(x— a) + 5F(a)(x = @) + ...,

where F'(a) is the first derivative of Flx) evaluated at x = a,
F{a) is the second derivative of F{x) evaluated at x = a andl
“4 ...” means terms that are higher powers of (x — a), such
as (x — a), (x — a), eic.
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BOX 3.1 CONT.

Taylor expansion for a function of two variables:

Flxy) = Fab) + ”’;‘J’;"* =+ B0,
+ 1( #Fab)

2 dx?
o g
+ g A F{a,b)
dx dy

P Fla,b
+—?j;-f’—}{y— b}”).

(x — o)*

(#—a) (y —

-.There aF{a,b) /9x and df{a,b) /dy are the first partial deriva-
tives of Flay) with respect to x and Foevaluated at x = g and
¥ =b; #Fa,b)/05%, 3*Fa,b) /dx ay, and #*Fla,b)/3y* are the
second partial derivatives with respect to x, with rr;spem to x
once and y once, and y, evaluated at x =g and y = &

6. The chain mle:

I
/&) = fgg(x.

Expectation, Variance, Standard Deviation, and
Coefficient of Variation
We denote average, mean, or expectation by E{ }. For a

discrete random variable and for any function g(z), we de-
fine the expectation by :

EZ} =3+, o Ez=7 2f(z) dz (3.26)

-

for discretf: and continuous random variables, respectively.
{Rcf?r agsfm to Box 3.1, for the calculus facts regarding the
relationship between sums and integrals.)
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BOX 3.2
Fawpom SEARCH AND PREDATION

The rules of probability we just discussed provide some inter-
esting insights into predation. We encourage vou to work out
all the details of this example, because it will help solidify the
notions of probability and the notation we use,

Suppose that an organism searches for food and

Prifinding food in the next increment of tme Af | no food
found thus far} = eAt + ofAl),

where ¢is a fixed constant (this will turm our o be very im-
portant) and o{At) represents terms that are higher powers
of At We set

(}t) = Prinmt finding food in the interval (0,41}

and note that for the animal not o find food in the interval
[0t + Af] it first must not find food in the interval [0,¢] and
then not find food in the next AL Assuming that these are
independent events (what is the biological implication of
this assumption?),

Xt + dt) = Q01 — cAt + ofAt)].
Subtracting () from both sides we have
Ot + A — N = — cQ(f Al + o(At).
Dividing both sides by dt and letting At — 0 gives the deriva-
tive of (ly(t) on the lefi-hand side (see Box 3.1). Since o{Af)
denotes terms that are like (A0%, ete., o(Af) /AL — 0 as At —

0. Thus, the difference equation becomes a differential equa-
tion for (4):
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BOX 3.2 CONT.

dQ sy
i e Q).

We see that the derivative of (J;(4) is a constant times 1),
This means that {¢) must be an exponential (see Box 5.1)
of the form Q(f) = Ae™ " Since Q() = 1 (no food is found
before the start of the search for food), the constant A=1.
We have demonsirated that

Prinot finding food in [0,4} = Q1) = « =

Koopman (1980) derives this formula in a different way in
which the biological interpretation of ¢ becomes more appar-
ent. Suppose that the search takes place in a “large” region
of area 5 that contains the food item. Assume that Wis the
detection width of the searching animal, in the sense that il
the food is within a distance W/2 of the animal, the food is
discovered. If v is the speed of the searching animal, in the
interval of time df the animal covers an area WuAr and de-
tects the food with probability Wedt/sl. Envision the time
interval [0,¢] divided into n legs of length ¢/n, so that A¢ =
L/n. Assuming that detection on each leg is independent of
previous legs pives

Frino detection of food in [0,4]}
= [Pr{no detection of food on a single leg}]”
i)

HAn

In the limit (see Box 3.1) that n — =, the right-hand side of
this expression becomes ¢~ "2/,

Prino detection of food in [0,t]} = ¢ Worrat

BOX 3.2 CONT,

so that the interpretation of ¢is ¢ = detection rate = Wo/sl,
and these parameters— W, v, and #l—can be measured inde-
pendently of the searching process. Because Q) =¢™ " and
it is only possible 1o take the exponential of dimensionless
quantities, we conclude that the units of ¢ {(which are often
denoted by [c]) must be 1/time. Since the units of W are
length, of v are length/time and of & are {Ienglh}g, we see
that Wer/sl has units of 1/time, as it should if our analysis is
correct.

We shall now use notions of conditional probability to
demonstrate the “memoryless property” of this model, as-
suming once again that ¢ is a fixed and certain parameter.
We begin with () = ¢ " and ask: What is the probability
that the animal does not find food between § and ¢ + 5
given that it did not find food up to tme 7 Applying the
definition of conditional probability,

Prino food in (4¢ + 5} | no food in (0,0)}

_ Prino food in (4,4 + 5) and no food in (0,4}
Vi Prino food in (0,00} i

Since the numerator is the same as no event in the interval
from 0 to ¢ + 5 we have

Prino food in (.6 + 5) | no food in (0,6}
- ﬂ—l'(f.—.ﬁ:llll,le—l'!

e I-'r{nu Foaoud in {U,H)}

Thus, the fact that no food was found before time ¢ provides
no information about the probability of events afier time L
The predator in this model does not “learn.” This is some-
what discomforting, because we expect that a failed search
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should provide information about the search rate e But re-
member that we assumed ¢ to be known and fixed. Later in
this chapter, alter discussing the gamma density, we will con-
sider how failed searches may change our view of the fre-
guency distribution of ¢ if we allow it to be uncertain.

These definitions generalize for any function g(Z); for ex-
ample, E{g(Z)} = Z, g(z)f.. The generalization is very
handy ftor computing measures of variability about the aver-
age. If we denote the average by my, the variance of the
random variable £ is

VAR{Z}

E{(Z—m)*}
(e-m)?f  or  [fiz— m)®f(z) dn (3.27)

depending on whether the random variable is discrete or
continuous. The variance gives a sense of the “spread” of
values of Z around the average.

Two other measures of variability of Z are the standard
deviation,

SD{Z} = VVAR{Z} (3.28)
and the coefficient of variation
|
: SD{Z}
CV{Z} = ——.
iz} E{Z} (3.29)

We are partial to the coefficient of variation as a measure of
variation for the following reason. The standard deviation
has the same units as Z, so that the coefficient of variation is
a dimensionless measure of variability in which the scaling is
relative to the mean. To see why this kind of scaling is im-
portant, consider the following two sequences of numbers:

A
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A 45, 32, 12, 23, 26, 27, 39
B: 1040, 1027, 1007, 1018, 1021, 1022, 1034

Wwhen asked which sequence is more variable, most people
will say that sequence A is more variable, Sequence B is se-
quence A plus 995, so that the variance of these r.wr.r St._
quences is exactly the same. However, the coetficient of vari-
ation of sequence B is much smaller than that of A. You
should (i) verify that this is true by computation, and (ii)
understand the reason for this being true. Some cognitive
psychologists have argued that this is a matter of context:
“Which series exhibits more variability? Most people answer
series A. However, the statistical measure of vartance—which
indicates the amount of irregular variations from the mean
of a series of numbers—is the same for both series, Series B is
simply series A plus a constant. However, intuitive judg-
ments of variability are usually influenced by the size or con-
text of the series or objects. That is subjectively relative vari-
ability is more salient than variability per se” (Hogarth 1980,
44,

But when numbers have units, both the magnitude and
the variability have meaning. For example, suppose that we
measure the weights of five rodents and these are 0.079,
0.120, 0.085, 0.099, and 0.100 kg respectively. The average
weight is 0.0966 kg, the variance is 2.018 X 10~* kg® (why
kg??), and the coefficient of variation is 0.147, If the animals
were weighed in grams rather than kjlugralms, the average
would be 96,6 g and the variance 201.84 g” but the coeffi-
cient of variation would remain the same at about 15%.

By using the coefficient of variation, one takes this com-
parison out of the realm of the subjective and into thde
realm of the objective, with a measure of variation that is
context-free because it has no dimensions. There is a tradi—_
tion in ecology, which we elaborate during the discussion c:l
the Poisson distribution, of comparing the mean and vari-
ance of data in order to determine whether the subject of
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study is “clumped” or not. This can only make sense il the
random variable Zis dimensionless.

The Delta Method
When g(z) is nonlinear, £{g(Z)} is generally not equal to
g(E{Z}). We encourage you to try out a numerical investiga-
tion for g{z) = z* using both the numerical data in Figure
3.3 and the negative exponential distribution of Figure 3.4,
Because E{g(Z)} may be difficult o find, an approximation
commonly used is the “delta method” (Seber 1980). As be-

fore, let my = E{Z} and construct a two-term Taylor expan-
sion g{Z) around m;:

glZ) = g(my) + g'(my) (Z — my)
1
+ Eg’r(ml} (Z—m)* + ..., (3.30)

where, also as before, g'(m;) and g"(m;) denote the first
and second derivatives of g{z) evaluated at z = m;. Taking
the expectation and ignoring all the terms represented by
the ellipsis “+ ... ,” we have

E{g(Z)} = Elg(m)} + Elg' (m) (Z — my)}
1
- EE{g"{m]} (z — m)*} (3.81)

You should verify from the definition of expectation that for
any constant

Elc} = ¢ and Eleg(Z)} = cE{g(Z)} (3.52)
and that
E{{Z—my)} =0. (3.35)

Since g(m), g'(m;), and g"(my) are constants, Equation
3.3]1 becomes

: - 1
E{g(Z)} = g(m) + 5 ¢"(m) VAR(Z). (3.34)

We prefer to call this the method of “navy math,” since it
was commonly used by scientists in the Operations Evalua-
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tion Group (OEG) (see Tidman 1984) during World War II
(Morse 1977) as a quick means of computing expectations.
Those scientists and the ones who followed (Mangel 1982)
are the inspiration for the part played by Kelly McGillis in

Top Gun.

PROCESS AND OBSERVATION UNCERTAINTIES

Before discussing particular probability distributions, let
us spend time thinking about how stochasticity enters into
ecological models. Ecological models often begin with a de-
scription of the processes of interest (e.g., birth rates, death
rates, migration rates, ete.). For this reason, these models
are sometimes called “process models.” Uncertainty may en-
ter into these processes because parameters vary in un-
predictable ways.

To collect data about an ecological system, we observe it,
and there will usually be uncertainty associated with the ob-
servations. For instance, suppose that we model a popula-
tion by

N1 = sN + by, (3.35)

where N, is the number of animals in the population at the
start of period ¢ sis a survival probability from tto !+ 1,
and &, is the number of new individuals added in the inter-
pal ftot 1.

Uncertainty could enter in a number of different ways.
For example, if birth rates fluctuate from one year to the
next, we could write

Nipy = sN, + b + W, (3.36)

where W, represents “process uncertainty,” “process stochas-
ticity,” “process error,” or “process noise” (depending on the
particular subfield of ecology, all these terms are used). We
use upper case to remind ourselves that W, is drawn from a
distribution; a particular value would be denoted by w,. In
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principle, W; could arise from a number of the distributiong
we describe below and could depend on population size.

Since it is likely that there is uncertainty associated with
the observations, we describe the observation model as

Nu'bﬂ..! = -'N-! Gls 1'!.!: {3.3?}

where N, , is the observed population size at time ¢ and the
“observation uncertainty” (or any of the other terms) V,
might also depend on population size.

The process and observation models are now combined
into a “full” model of the system:

N;+j_ = S.n!"!r; AE b; + H-':,
Nobey = Ny + V. (3.38)

To complete the model, we must specify the distributions of
Wi and V, and the initial population size. We shall return to
this model at the end of the chapter, once the requisite
skills are developed.

Since ecological detection involves comparing different
models, it is useful at this point to think about other ver-
sions of the observation model,

Bias.  Field methods for estimating animal abundance
usually involve an unknown bias. For example, not all ani-
mals may be seen. In air surveys of marine mammals there is
usually an unknown proportion of the animals below the
surface. Transect counts of birds or smaller mammals almost
always involve a fraction of the animals that cannot be seen
from the observer’s platform. To account for this effect, we
might modify the observation model to

Nabs,e = g, + V. (3.39)
Here, the parameter g allows for bias of the observation Sy
tem: When g is less than 1 we tend to undercount the ani-
mals, and when g is greater than 1 we tend to overcount
them. As before, V, represents the observation uncertainty.
It is almost always helpful, and frequently essential, to do
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] ﬂperiintlltﬁ to determine g However, in some instances, as
in fisheries, we must estimate g from the same data that we
use to estimate the parameters of the process model.

Nonlinearity. We generalize the observation model fur-
ther by including a nonlinear relationship between true
abundance and observed abundance:

Nypes = gIN)+ Vo (3.40)

When ¢ is greater than 1 the estimated abundance rises
more rapidly than real abundance, and when ¢ is less than 1
the estimated abundance changes less than real abundance.

A Detection Threshold. There may be a minimum thresh-
old population size below which no animals can be apen,
such as species where some proportion of the population
finds hiding places. In this case, the observation model be-

COmes
Nope = maxf{a + g(N)+ V,, O}, (3.41)

where max{A,B}= Aif A > Band max{A,B} = B otherwise.
If A < 0, it represents the population density below which
no animals can be seen. If A = 0, some animals will appear
to be present even when none are present. This could be
due, for example, to improper species identification.

In summary, there is always an observation process inter-
posed between the ecological system and our notehooks.
Every effort should be made to understand, calibrate, and
model the observation process. Doing this is an essential
component of ecological detection.

Additional Data. In some vears we may have additional
sources of data. For example, suppose that in one year we
had also conducted a study that provided an estimate of the
number of deaths, in addition to the annual survey of abun-
dance. Our model predicts the number of deaths as

D, = (1 — 9N, (8.42)
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where 1), is the number of deaths in year ¢ If we assume thae
the process uncertainty is entirely due to variation in births,
then the observation model for deaths is

Dopse = (1 = N, + Vg, (3.43)

where V,is the uncertainty associated with the observation
of the number of dead animals. Our model now predicts
both the number of animals and the number of deaths, and
when we see how well alternative models fit the data, we can
compare the predictions with these observations. In later
Fh“Fter5= we will explore how to use multiple observations
11 & mare rigorous framework,

However, we cannot conduct ecological detection without
knowledge of the probability distributions that might de-
scribe the various kinds of uncertainty. This is what we con-
sider next,

SOME USEFUL FROBARILITY DISTRIBUTIONS

“.-".|.Fc now provide a review of a number of probability distri-
butions that are tools for the ecological detective. We en-
courage you to skim this section now and return to it as the
distributions are used in subsequent chapters. However
whether or not you read it carefully now, you should rea{:i
the next section on the Monte Carlo method.

This review is not comprehensive, Our goal is to provide
enough information so that you will know how to compuite
F_‘r{data I model} and Pr{model | data}, which are the essen-
l:mIsr for ecological detection. We provide an ecological sce-
nario for most of the probability distributions, to help make
them more concrete. Once again, we encourage you to visit
the library and find a mathematics or statistics text that
deals with elementary probability theory. Our favorite text-
book in introductory probability is by Feller | 1968).

We describe four distributions (the binomial, mult-
nomial, Poisson, and negative binomial) in which the ran-
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) variables are discrete and observations take only inte-
ger values, The binomial distribution is commonly used in
mark and recapture studies, where a discrete number of in-
dividuals are examined. The Poisson is most often used
when dealing with counts of the number of plants or ani-
mals per unit time or space, or in the analysis of the num-
ber of individuals captured. When the data indicate more
variability than is consistent with the Poisson distribution,
the negative binomial distribution is more appropriate.

We describe four cases in which the random variable is
continuous. The first is the normal or Gaussian distribution,
which is the commonly used “bellshaped curve.” It has two
parameters: the mean and the standard deviation. The nor-
mal distribution is commonly used because of a theorem of
probability called “the central limit theorem” (Feller 1968},
which asserts that, in general (and there are some ecologi-
cally important exceptions), when the sum of a large num-
ber of random variables is properly scaled (we shall describe
this below), the result is approximately normally distributed.
This means, for example, that binomial processes with a
large number of trials can be approximated by a normally
distributed random variable. The normal distribution is sym-
metric about the mean, which poses many problems in ecol-
ogy, because this assigns positive probability to values of the
random variable that are less than 0, but often the random
variable itself (such as length) will have to be greater than 0.

One solution to this problem is to use the log-normal
distribution, in which we replace the assumption that the
random variable Z has a normal distribution with the
assumption that log(Z)—where log denotes the natural log-
arithm—has a normal distribution. This distribution has an
asymmetric shape with a long tail and the property that
values of the associated random variable cannot be less than
zero. The chisquare distribution is also based on the nor-
mal distribution and arises in the study of the distribution of
differences between predictions and data.
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Tagre 3.1. Common probability distributions classified according

to the nature of the trials and observations,

Observations

Discrete Continnous
Trials
Discrete Binomial MNormal
Log-normal
Gamma
Continuous Poisson =
Negative binomial
Finally,

we introduce the gamma probability distribution,
which is a very flexible continuous distribution that can be
used for describing a wide variety of data. It is al
tial component for some of the Bayesian
conduct,

In summary, experiments can involve either discrete or
continuous conditions, and the data can be cither discrete

or continuous (Table 3.1). An overview of these distribuy-
tions is given in Table 3.2,

50 an essen-
analyses we

The Binomial Distribution

Perhaps the simplest of probability distribution is the bj-
nomial distribution with parameters N and p; which we de-
note by B(Ng). It arises, for example
which an experiment with only two oure
times, and the random variable 7 meas
times a specified outcome occurs,
specified outcome occurs in an e
dom variable 7 takes integ
according 1o the rule

» in a situation in
omes is repeated N
wres the number of
If pris the chance that the
xperiment, then the ran-
er values ranging from 0 o N

PriZ = }} = p(kN) = (ﬂ Al = g v=h (3.44)
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In this equation

() = mr

Yt.)u should know the following facts about the binomial dis-
tribution (Feller 1968). The mean and variance are

N
E{Z)} =k2 kPr{z = k)
=Ny and  VAR{Z} = Np(1 - p). (3.45)

The coeflicient of variation is

o
el = Np (3.46)

f.-ﬂmn # is fixed, the coefficient of variation decreases as N
increases. This means that the relative variability shown by 7
-:ie:::rcases with the number of experiments conducted.

Fhe values of the binomial probability distribution can be
computed by an iterative procedure, First, note that

PON) = (1 — p™, (5.47)

F hen note that PUEN) and gk — 1LN) can be related as
follows:

N
PEN) = (* J P — s

= ‘“ M=
BN — Bt #Fa-p

NN - (k- 1)) 7 :
Ak — 1IN — (k- e P[Jl'} Yl - P}’\ {k—1) 1= # i

N=k+1 [
X T 1"‘}?{*_ 1A

(3.48)
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 Equations 3.47 and 3.48 can be implemented in the follow-
ing manner:

Pseudocode 3.1

Siep 1. Specily pand N

Step 2. Find p(0,N) from Equation 3.47,

Step 3. For k = 1 1o N, find p{kN) from Equation 3.48
and print out results in a form that vou like.

An Ecological Seenario: Sampling for Pests.  Suppose that we
are sampling fruit for infestations by a pest and know that
the chance that a fruit is infested is p IFN fruit are sampled,
the probability that k of them are infested is given by the
binomial distribution. You should use a program based on
this pseudocode to predict the distribution of infested fruit
if we sample 10 fruit, and #is 0.1, 0.2, or 0.3,

In most sitnations, we would not know p, but need to de-
termine it by sampling fruit, How many fruit should be sam-
pled? How do we estimate # from this sample? What confi-
dence can we associate with this estimater This becomes a
problem in ecological detection that we discuss later.

The Mullinowmial Distribution

The multinomial distribution is the extension of the bino-
mial distribution to a case with more than two possible out-
comes of the experiment. For example, suppose that the
fruit just described could be infested by more than one kind
of pest, but there is only one species of pest per fruit. Then
the data would be the number of uninfested fruit, the num-
ber of fruit infested by pest type 1, the number infested by
pest type 2, etc,

Suppose that there are M possible outcomes; we then
have a vector of random variables Z;, where Z; is the num-
ber of times the " kind of outcome occurred. Instead of
Equation 3.44 we now consider
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P.I‘{Zj = -k]_,Zg = kg, " .ZM
= ky in N experiments}
- F{k],kg, sy &M,J"'lrj, {3.49}
which is given by
Pk, ks, . .k N)
= N PR ke
T T (3.50)
We encourage you 1o develop a pseudocode for the mulij.

nomial distribution.

The Poisson Distribution
The binomial distribution is one for which
variable takes discrete values in discre
als. In the same way, the
process, to indicate that
is one for

the random
e experiments or tri-
Poisson distribution {or Poisson
: something is happening over time)
‘ \ﬁihll:'l the random variable takes discrete values
Qurmg contunuous sampling (usually area or time; we use
r{mr for definiteness). The Poisson distribution can be de-
rived as the limit of a binomial distribution when N — e
and p — 0 in such a way that Np is constant (Feller 1968)

If Z(t) has a Poisson distribution, then -

PriZ(t) = k} = M,
k| (3.51)

Here ris called the “rate parameter”
tion. You should know the
distribution {Feller 196G8).
The mean and variance are

E{Z(6)} = nt

. of the Poisson distribu-
following facts about the Poisson

and
VAR{Z} = ry,
so that the coefficient of viariation is
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Y
LA~ \( ri’ (3.54)

Thus, for r fixed, the coefficient of variation decreases as ¢
INCreases.

The Poisson distribution can be derived from assump-
tions about what happens in a very small (infinitesimal)
amount of time (Feller 1968). Suppose that At is a very
short time interval. We assume that either nothing happens
in this rime interval or one event happens, and that the
probabilities are

Pr{no event in At} = ¢ "™

Pr{ exactly one event in At} = 1 — ¢ "

(3.55)
In probability textbooks one usually finds this written as
Primore than one event in At} = of{Af), where o{At) is the
notation that we introduced earlier denoting terms that are
high powers of At. Since e*=1 + x + %/2 + ...,

Prino events in At} = 1 — »At + e{AD,

Prione event in Atf) = rAtr + o(Ad). (3.56)

We strongly recommend using Equation 3.55 whenever nu-
merical computation is done, because Equation 3.56 is only
an approximation, whereas Equation 3.55 is fundamentally
true. For example, regardless of the value of At, Equation
3.56 can lead to probabilities that are bigger than 1 or less
than 0 if »is big enough; this does not happen with Equa-
tion 3.55.

The mean and variance of the Poisson process are equal,
Also, note from Equation 3.55 that the chance of an event
in the next bit of time depends only on the time interval
and not on any history or current state of the system, We
saw this previously with the discussion of random search.
Thus, there is a tendency to think of the Poisson distribu-
tion as representing “randomness.” Since the mean and
variance are equal, the tradition evolved in ecology to con-
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sider the ratio of the variance of the data to the mean of the
data. If this is about 1, then the data are considered to he
random, and if the ratio is considerably bigger than 1, thep
the data are considered to be clumped. Such reasoning only
works for special kinds of data, because for this to make
sense at all, the data must be dimensionless so that the vari-

ance-to-mean ratio has no units,

As with the binomial distribution, it is empowering to he
able to compute the terms of the Poisson distribution your-

self. This can be done by an iterative procedure. Once
again, we begin by setting p(0,¢) = ¢ ™. Successive terms
are then computed by recognizing that

e "(r* Wi ¢ Bkl o 1 b
1

Re Kk (k=1

%)m o

plht) =

(3.57)

Before we describe the pseudocode, note the following. Un-
like the binomial distribution (which has exactly N terms),
the Poisson distribution has no limit on the number of
terms. Thus, when computing it, you must introduce a cut-
off (close to 1), so that when the sum of terms exceeds that

cutoff, the computation stops. A pseudocode for this com-
putation is:

Pseudocode 8.2
1. Specify r, 1, and the cutolf,
2. Set p(0ht) = ¢ ", Set sum = p0,¢).
4 Cycle over values of k = 1 and find p(k,¢) from Equation
3.57. Replace sum by sum + p(k,i).
If the sum is less than the cutoff, return o
step 2 othenwise go to step 4.
4. Print out results as you desire,
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The Normal or Gaussian Distrilution

The two distributions considered thus far involve a ran-

dom variable Z that takes discrete values. The usual example
of a random variable taking continuous values is the normal
or Gaussian random variable. We will use the notation
N {m,uz} o denote a random variable X that is normally dis-
wributed with mean m and variance a”. We use the symbol X,
rather than Z, to remind you that these are names ol ran-
dom variables. As long as you remember that they have spe-
cific meanings and biological interpretations, there will be
no problem.

We need the following facts about the normal distribu-
tion. The distribution function Fix) is

Flx) = PriX = x

X a
= ] = .[ exp [ = {52_2 m} ) s,
2mo” . % (3.58)

In this expression, the integration variable s takes all
values between s = — and s = x Since it must be true

that Pri—= < X <=} =1,

: I (———Fh_m}z)m—l
3 exp == = 1,
Ima® V. 20 (8.59)

which means that

e R
exp( {at 2’“} ] ds = V2ma®.
L il g (3.60)
This is a handy trick for evaluating complicated integra_ls
that are associated with probability functions, and we will
use it later.
The normal density function f(x) is
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1 -{:-:—m}ﬂ)l

flx) = Bnas P ( 902 (3.61)

The function f(x) is the familiar “bell-shaped curve.” Plog it,
if it is not completely familiar; vary m and o to see how they
affect the shape.

If Xis N(mo®), then the transformed variable ¥ = (s
m) /o is normally distributed N'(0,1). The distribution fune-
tion of ¥is given the symbol Py (y):

i 9
Puiy) = “% f exp ( - ::E ] s, (3.69)

and once again the integration variable ranges from s =
—% to s = y This function is especially useful. Note that
Py(0} = 1/2 and that if y < 0, then Fn(y)= 1 — Py(lyl).

To find Py(y) one can compute the value of the integral
numerically, but a number of excellent algebraic approx-
imations exist (Abramowitz and Stegun 1965, 932), and we
Irlacummend their use. If y = 0, the following approximation
is accurate o 10°%

1 2
Pyly) =1 - w oxP ( = %) [af + agt® + agt’], (3.68)
where { = 1/(1 + py), and the constants are p = 0.332 67,
a=0.436 183 6, a, = —0.120 167 6, and ay=0.937 298 0,
It often happens that we want to invert the normal distri-
bution function. That is, we wish to find a value ¥p such that
Pf\rl:jpj = pn where the value of p is specified. There exist
nice algebraic methods for this inversion as well {Abramowitz
and ‘Steglm 1965, 933). If 0.5 = p = 1, then the following ap-
proximation is accurate to 4.5 X 10~

J} i iy + C1£+ (.'2{2
L+ dit + dot® + dot®’ (3.64)

where t = Nlog (1/¢%), g = 25515 517, ¢, = 0.802 853, ie
= 0.010 328, dy = 1.432 788, dy = 0.189 269, and ds
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=0.001 308. If p < 0.5, then we find the value of y; _, ac-
cording to the same formula and then set y, = —y,_,.

As we mentioned earlier, according to the central limit
theorem (CLT), appropriately normalized sums of random
yariables have a distribution function that approaches the
normal distribution, Suppose {7} is a sequence of indepen-
dent random variables with m; = E{Z,} and ¢,° = VAR{Z,},
and set

k=1 (3.65)

According to the CLT, the variable £ = (8§, — m,)/s, is
approximately normally distributed with mean 0 and vari-
ance 1. If the 4 have the same distribution with common
mean m and variance o, then the N(0,1) random variable is
(8, — nm)/on. We shall use the central limit theorem in
the next section to motivate the log-normal distribution,
and in the next chapter for the determination of the obser-
vation effort when monitoring the incidental catch of sea-

birds in a fishery.

The Log-Normal Distribution
To understand the log-normal distribution, imagine a
population of initial size Ny during a nonbreeding season,
We expect the number of individuals alive at some later day
t, N,, to be the product of N, and the daily survival proba-
bilities {s;}, where s is the probability that an individual sur-
vives from day i to day ¢ + 1. Thus
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Taking logarithms of both sides gives

log(N;) = log(Ny) + log(sy) + log(sy)
o 4 logis_q). (B.67)

If the daily survival probabilities are random variables, then
using the central limit theorem, we assume that an appro-
priate normally distributed random variable ¥ can be con.
structed from the sum log(sy) + log(s;) + -+ + log(s,_ ).
We then say that Z = ¢ has a log-normal distribution, and
we can rewrite Equation 3.66 as

N, = Npe¥' = NZ (3.68)

One advantage of the log-normal distribution is that a nor-
mal random variable takes values between — and =, but
many ecological variables are typically positive. The log-nor-
mal random variable takes only positive values. In addition
the log-normal distribution has a long tail, which is cmnmm;
to ecological data,

We will now explore some properties of the log-normally
distributed random variable Z = ¢*, where we assume that ¥
is N(0,0%). We begin with the distribution function

F(2) =Pr{iZ=:}=Pr{e" =2} = Pr{y = log(z)}.  (3.69)

Since we knowt that ¥ is normally distributed with mean 0
and variance o,

lonziz )
1 2
f-‘"{z} = — - _:__ .
Vamg? _L (- 5m) o (3.70)

The density function is found by taking the derivative of
#(z), and using the chain rule when evaluating the deriva-
tive of the integral,

1
o
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Thus, although ¥ has a normal density function, the density
of Z is skewed, and given by Equation 3.71.

Finally, let us evaluate the mean of the random variable Z
Before doing the calculation, we can try to develop some
intuition. The mean of the random variable ¥ is 0, and ¥
takes positive and negative values. However, Z = ¢" will only
take positive values, so that we expect the mean of Z to be
larger than 0. We shall now demonstrate this. We start with

£z = [0 deim = | e’exp( = ~—2] &,

0 Vomo® S < (3.72)
which is justified by noting that, as z varies from 0 to = with
density f(z) given by Equation 3.71, y varies from —% to =
with the standard normal density. Bringing the two expo-
nential terms together gives

Ho = g [ (g a)e

We now complete the square in the exponent according to

b 1 .
5= y=as iyt —la

2g°
="L['[—0232-U"i
9% - Y : (3.74)
so that the expected value of Z becomes
SN S Mo 1 L e bt
E{Z} = Vomg? L exp 902 [(y—0*)*—a"] |dy
o’ 1 T
- o (T ) Vot |,
1 9,9
xp = 53 0=0Y% ). (3.75)
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The integrand in Equation 3.75 is a normal density with
mean and variance o, but the range of integration is over
all values of y; hence the integral must be equal to 1, and we
obtain

ALg
E{Z} = exp (1)
2
We thus see that the mean of Z is indeed greater than 0,
and that the random variable 7 EXp (—a%/2) will have a
mean equal to 1. We will use the log-normal distribution
extensively in the case studies of fisheries management,

(3.76)

The Chi-Sguare Distribution
Another random variable connected to the normal distri-

bution arises as follows. Suppose that the response Z to a
control variable X is

L= (3.77)

where Yis normally distributed with mean 0 and variance 1,
The squared deviation between the prediction and the inde-
pendent variable is then

(2~ 5% = ¥2 (3.78)

fand is called the chisquare random variable. If we had n
independent variables {X,} and responses {Z.} then the to-
tal squared deviation would be

21 (Z, - X;)? = 2 Y2,
i= =
' (3.79)
which is _called the chi-square random variable with n de-
grees of freedom and is given the symbol y7,
The Gamma Distribution

The gamma distribution also takes non-negative values,
can have a long tail, and is very useful in Bayesian analysis,
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A random variable £ follows a gamma density with parame-
ters a and = if the probability density function is

#

Y o —az  n—1
AE i e T i (3.80)

In this equation, T'(#) is read “gamma of #” and is described
in Box 3.3.

If you don't worry about these things, just think of
a"/T(n) as a normalization constant to ensure that f(z) de-
fined in Equation 3.80 is a uue probability density (i.e., its
integral is 1); the gamma function plays the same role that
(m plays in the binomial distribution. That is, since Pr{0 =

Z < =,

a —az _n—1 Pt
—— dz = 1,
jr = L - (3.81)

[i]

Since a"/T'(n) is a constant, it can be brought out of the
integral sign:

L

1]
I(n)

Pt :u—l dz =1

e T

or je_’” elide = i:ﬂ :
o “ (382
We now consider some properties of the gamma density,
Equation 5.80. To begin, note that if n = 1, since I'(1) = 0!
= 1, f(z) = ¢ ™, which is the exponential density.

When n< 1,as 2 — 0, 2" ' — =, so that f(z) = = When
n =1, 2" ! will approach 0 as z — 0, so that f(0) = 0 and
the gamma density has a peak (Figure 3.5) because ¢ ™ —
0 as z increases. Thus, the single parameter n controls the

wide-ranging shape of this density.
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BOX 3.5
AN ASIDE ox THE Gamma FuncTion

Most readers will feel comforiable with the more COMITGOn

special functions such as log(), e or sin{x) and cos{x)..

These relatively simple transcendental functions {i} are en-
countered frequently, (ii) often have simple physical inter-
pretations, (iii) are well abulated, and (iv} have simple
power series and limiting behaviors, such as 2"/¢* — 0 as x
= = for any n, or lim, _, , (sin x)/x = 1.

The gamma function shares many of the same qualities, A
good source book is by Abramowitz and Stegun (1965), The
gamma function U(n) arises in classical applied mathematics,
and is defined by the integral

Din)om | a7 ) iy

T K

1

Integrating by parts gives

Cin+1) = J‘e_if" di = = s
i}

)

+ ! et dp = wl(n),

50 that we conclude that

F'(n + 1) = nl'(n).

This recurrence formula is similar

to the one for factorials in
which nl =

mn = 1)1 For integer values of n, Tin + 1 P
n! The general recurrence holds for all values of

: s i, however,
not Just integer ones,
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BOX 3.3 CONT.

Abramowitz and Stegun (1965, 256) show that I'in) can be
calculated from the formula
in) =

= .

E gt

k=1
The best way to use this formula is to write n = m; + 7y,
where n; is an integer and ng is a fraction with 0 < ne < 1
First compute I'ing) from the power series and then use the
recurrence relationship. For example, T'(3.7) = 27T(2.7) =
(2.1 N0 = (27 (L7){0.7)(0.7). The first nineteen
of the ¢, are (Abramowitz and Stegun 1965, 256):

k (Y
1 1.0 (1] OO 000 000 i
2 0.577 215 G4 901 532 9
5 - (0.655 B8 071 520 258 8
4 —0.042 002 635 034 095 2
5 0. 166 H3E 611 382 291 5
6 - (.042 197 754 555 544 5
7 = 0,009 621 971 527 877 0
8 0.007 218 943 246 GG 0
9 = (0.001 166 167 | 5549 1
10 = 0,000 2156 241 674 114 9
11 0.000 128 050 282 388 2
12 —0.000 020 134 H54 TEO Ty
13 = 0,000 | 250 49% 482 1
14 0.000 0ol 133 027 232 0]
15 — (L0000 000 205 G35 Hd1 i
16 0.000 00 (L1 116 095 0
17 0.000 o 005 002 i 5
18 = 0.000 (00 o1 181 274 (7]
19 (L0000 oo 000 104 342 7
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Fioure 3.5, The gamma probability density f(z) for three values of the
parameters n and o Note the range of shapes that is possible for this
density. (a) n = 1, 2 = Libjn=2a= L) n=2a=05

The expected value of Z is
‘I" = aE H
— g~ V" dr
'[ (

E{Z} = | 2f(2) dz =
?[ o ELe (3.83)

Using a modification of Equation 3.82 gives

Cint+l) a"
B %ﬂl_lj{;n]

)
a’ (3.84)
The mean of the gamma density is the ratio of the parame-

ters, The most likely value (i.e., the “mode”) of the gamma
density is found by setting the derivative of f(z) equal to 0

2 H T -
; " & 3 and solving for z* = (n — 1)/a so that the most likely
value of the gamma density occurs at a value smaller than
5 the mean, and therefore the density has a long tail.
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We encourage you to find the second moment using the
same method, and then show that the coefficient of varia.
tion is

cviz} = ] '
el (3.85)

so that the single parameter n also controls the coefficient
of variation,

Ecological Scenario: The Return to Random Search. We now
return to the discussion of random search by predators
(Box 3.2). Recall that we concluded there that

Q(t)= Prino food is found between 0 and ¢} = # °, (3.86)

and that this function has the memoryless property that un-
successful search up to time ¢ provides no information about
the chance of success after that time.

Previously, we assumed that ¢ was a fixed constant. Let us
now suppose, however, that ¢ has a frequency distribution.
For example, the search rate might VAIY ACross Seasons,
across spatial locations as the predator searches, or across
individual prey items. In that case, Equation 3.86 is rein-
terpreted as the conditional probability of not finding food,
given the value of ¢ Assume that ¢ has a gamma density.
Then the joint probability of not finding food and the value
of cis

Pr{no food is found between 0 and ¢ and the
search parameter takes the value ¢}

—ct @ —ac m=1

fm © ° ° (387)
Consequently, the probability of not finding food is
Pr{no food is found between 0 and i}

and the search parameter takes de

= no food is found between 0 and ¢
- e
o the value ¢
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a —fa+tle _m=1 et a -
Tt e

S

(3.88)

You should verify the integral, once again by using logic sim-
ilar to that in Equation 3.84. You should also verify, follow-
ing the same calculation as in Box 3.2, that the distribution
in Equation 3.88 does not have the memoryless property.
We return to this example once more, when we discuss
Bayesian analysis, because if ¢ has a distribution of values,
the predator can learn from its failed search and learning
changes the frequency distribution, The precise way that
this is done requires the methodology introduced in Chap-
ter 9.

The Negative Binomial Distribution

The negative binomial distribution arises in two ways, and
both are relevant to the ecological detective. First, imagine a
sequence of independent experiments, each of which has
probability p of succeeding., We are interested in the num-
ber of experiments needed before s successes occur. In par-
ticular, we ask for the probability that the s success occurs
on trial Z = u + s where « is the number of unsuccessful
experiments, so that u = 0,1, 2, . . .. The s success can
happen on trial  + s only if there are s — 1 successes in the
first # + 5 — 1 experiments and a success on the (u + #110
experiment. The probability of the latter event is p and the
probability of the former is given by the binomial
distribution

(u-l-a‘—l

s—1 i u+s—1—{s—1)
TiL e

TR O St ) T o
( © 0 S

Multiplying this expression by f, we obtain
Pris" success occurs on trial u + s}
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ity =l
1 — M
( u ]‘ﬂ ( P (3.90)
This is the first form of the negative binomial distribution,
Here the parameters are w and p with the possible values y
Zand 0 < p< 1.

The second form of the negative binomial distribution
arises when we consider a Poisson process in which the rate
parameter has a probability distribution. In that case, we
can interpret Equation 3.51 as a conditional probability:

¢ M(rt)’

Pr{Z(t) = s | parameter = r} = . ; (3.91)

Now assume that r has a gamma density with parameters »
and a, so that the expected value of ris n/a. The uncondi-
tional distribution of Z(¢) is found by integrating the prod-
uct of the conditional distribution Equation 3.91 and the
gamma density, since this product is the Pr{Z(t) = s and
the parameter = r}, over all possible values of

=ri 5 i
Pr{ZH} = _i} = I%ﬁrun&n—l ".-?_‘
it (3.92)

Taking everything that is constant out of the integral gives

=

L}
Pl{z{” = 5} seobe "‘g—{f+u]r’.1+n—| ar

- sIl(m) (3.99)
Computing the integral as before,
Tf —Granatn=1 g _ I'(n + :1“
0 T H (3.94)
s0 that
Pr{Z(s) = s} = t'a" Tin + 5

~ sIlT(n) (a + O)°F*
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T+t a"
a Sodas o E TR M T

o r‘l:'r:n-;_sf} [ a i s]j[ a i :)"‘ (3.95)

If we set p = a/(a + t), then Equation 3.95 can be rewrit-
ten as

nti=

l (1 5
Pr{Z(1) = s} = ( . ]p a - p- 15

which is analogous to Equation 3.90 with n replacing . Tl-lm
difference is that we now allow any value of n, whcre;fs in
Equation 3.90 the understanding is implicitly that u 1s at

least 1. 03
The mean of the negative binomial distribution is

(=t et m -
E(Z()) = = b £ = 2t=mw (3.97)
and the variance is
mit)*
VAR{Z(1)} = m(t) + — = (3.98)

Unlike the case of the Poisson distribution, in which rjhc:
variance and mean are equal, the variance of the negative
binomial distribution will always be larger than the mean.
Hence, n is often called the “overdispersion” parameter. We
can see this more clearly by considering the coeflicients of
variation. For the Poisson distribution,

1
CVroisonl Z(8)} = i’ (3.99)

whereas for the negative binomial distribution,

S
CVnelZ(D)} = \}'m—”] iy (3.100)
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From Equation 3.97 we see that as { = =, m(t) — = Al
though the CV of the Poisson distribution goes to 0 as t —
=, the CV of the negative binomial distribution approaches a
constant, Note that as # increases, CVyp approaches CVpg,
This can be shown more precisely: that as n — =, the nef;a-.
tive hinomial distribution becomes more and more Poisson-
like.
A form of the negative binomial distribution commonly
encountered in ecological texts (e.g., Southwood 1966),
and one that we find handy to use, is

%(“%)(ﬁ) (3.101)

where kand m are parameters. Using Equation 3,95, setting
mit)= (n/a) {, and doing some algebra shows that

PriZ(t) = s} =

Pri{Z{t) = s}
R ] mii) s 1 n
T Tin)4d (n + mit) ) ( n + mit) ) ' (35.102)

Comparing Equations 3.101 and 3.102, we see that m(t) and
m have exactly the same interpretation as the mean, and
that & and » have exactly the same interpretation as the
overdispersion parameter.

We can find the terms of the negative binomial distribu-
tion using an iterative procedure similar to the one used for
the binomial and Poisson distributions. For purposes of
commonality with most ecological texts, we adopt Equation
3.102, rewriting it with Z(f) = Z m(t) = m, and n = k, so0
that

| SO ) T m)
PriZ = s} = o] (;Hm)(]"z) ' (3.103)

and note that the last term is the same as [&/(k + m)]" so
that
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pr{Z = s} = plsmk)
Tik + 5 m s ki )-"
Tiks! \k+mf\E+m : (3.104)

k
From this equation, we see that p(0,mk) = [kik + m)]
and that additional terms can be computed according to

s+ k-1 i g
plsmk) = s et b i)

fors=1,2,.... (3.1056)

The iteration result, Equation 5.108, is tl_uriw:d in Ehc san‘1%-
way as the iteration results for the binomial and P(:flssultn dis-
wibutions were derived. We encourage you 1o derive it and
write out the pseudocode. We shall now use it

THE MONTE CARLO METHOD

In order to confront models with data, we must estimate
parameters in the models from the data and then choose
one description of nature over another. Because WE usually
do not know the true mechanisms and processes in the natl-
ural world, we never know if the parameters that ‘n\:’ﬂ Mmm.-
mate are indeed “true” or if the model that u. picked is “cor-
rect.” One way to increase our confidence in the melhml'ls
we use is to test models and methods on seis of data n
which we know exactly what is happening, i.e., where we
create the data and thus know the true situation exactly. A
useful method for generating such data is ca.lled ﬂ}e Mﬂrfte
Carlo method or the method of stochastic simulation (Rip-

a87).
1ETT1I1E h}{{)l!t{: Carlo method uses mndum-num't.:cr genera-
tors for the construction of data. Virtually all microcompu-
ter languages have builtin random-number gcner:zltturs. ;r]:d
these are, for almost all of our purposes, sufficient. The
usual problem with such generators '!5 lk‘:at they are zr;lz
quasi-random and have a periodic cycling in the genera
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of the numbers. These days, however, the periods are of the
order of 2%, so that the difficulties are minor. The random
number generators usually provide a value U that is uni-
formly distributed between 0 and 1. Thus, the distribution
function for Uis ;

T

F =10 otherwise, (3.106)

and the density is flu) = F'(u) = 1.
To construct a random variable £ that is uniformly distrib-
uted on the interval [A, 5], we pick {fand set

Z= A+ (B— A (8.107)

Since the smallest value that UV takes is 0, the smallest value
that Z takes is A; similarly, the largest value of £ = B, corre-
sponding to U = 1.

Typically, the command f = END in a computer pro-
gram will generate a uniformly distributed random variable
{but check the manual for your software), We now describe
methods for generating random variables with other
distributions,

Binomial, Poisson, or Negative Binomial Random Variables

These three distributions have the common feature that
the random variable Z takes integer values. We shall illus-
trate the method for generating individual random variables
from a specific distribution using the binomial distribution,
and leave the Poisson and negative binomial distributions to
you,

For the binomial distribution, the probability p(kN) of
obtaining exactly k successes in N experiments is given by
Equation 3.44. If p{kN) is summed from & = 0 to k = N,
the sum is 1. The value of k associated with a particular
value of U = w, called k,, is chosen so that

a8
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L
> plkN) = U

=10

and

kot

> plN) > U

k=D (3.108)

A pseudocode that implements this idea is:

Pseudocode 3.3

1. Specify parameters N and . Choose a uniformly
distributed random number U Set & = 0 and SUM = 0.

. Compute p(k,N) from Equation .44

4. Replace SUM by SUM + plk.NY.

4. If SUM = U, then the current value of k is the number

replace

(e

of successes in this single experiment. Otherwise,
kby k + 1 and return Lo step 2,

Normal Random Variables

To generate normally distributed random variables, we
recommend the use of the Box-Mueller scheme (Press et al.
1986, 202). Choose two uniformly distributed random num-

bers U/; and Uy and set
Z, = ¥=2 log(lh) cos(2wls),
Z, = V=2 log(l}) sin(2wUs). (8.109)

Then Z; and Z, are normally distributed randu:fi variables
with mean 0 and variance 1. To make these variables nu’r-
mally distributed with mean m and variance o, replace Z;
by m + oZ,;. We leave writing a pseudocode to you.
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Cramma Random Variables

Gamma random variables are more difficult to generate,
Press et al. (1986, 204 1) describe one method (“the rejec-
tion method™) that interested readers may wish to consult,
In general, some form of integration of the probability den-
sity is needed.

An Ecological Scenario: The Simple Population Model with
Process and Observation Uneertainty

We return to the model Equation 3.38. In order to gener-
ate data with this model, assumptions about W,, V,, and the
other parameters are required. For example, we might as-
sume that the process and observation uncertainties are nor-
mally distributed with mean 0 and siandard deviations oy,
and oy, respectively, but that the initial population size N, is
known exactly, As a demonstration of the importance of un-
derstanding observation and process uncertainty, and to
demonstrate the Monte Carlo technique, we now perform
some simple computer experiments based on the following
pseudocode. A pseudocode for this model with process and
observation uncertainties is;

Pseudocode 5.4

1. Specify 5, & oy, T o and N,

2. Begin a loop over 50 time steps.

3. Caleulate Ny, and Ny, from Equation $.38.
4. Print or graph resulis as desired.

5. Exit after 50 time steps.

We chose s = 0.8, b = 20, and N, = 50,

To begin, we can ask how process uncertainty affects the
relationship between N, and N, . If we allow for process
uncertainty (oy = 1), but no observation uncertainty (o
= 0}, the observed values are “scattered” about the true
value (Figure 3.6) but will be centered on it. A standard

a0
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Population size at time t

l.‘;l T T T ¥ T T T M T 1
1] 20 an &0 -1:] v 120 L] 160

Population size at time t -1

Froure 3.6, One Monte Carlo realization of fifiy data points drawn
with process uncertainty but no observation uncertainty, The solid line
represents the true model (deterministic relationship).

linear regression fit to the data gives y = 20.01 + ﬂ.Hl]!?:u:
with 2 = 0.723. Thus, both the birth rate (the constant in
the regression) and the survival (the slope of the regres-
sion) are accurately determined.

If we now add ohservation uncertainty, by setting oy =
10, and use the same sequence of random numbers to gen-
erate the data, we obtain an apparent “relationship” (Figure
3.7) that is weaker than in the case without observation un-
certainty. In this case, the regression is y = 52,47 + 0.684x
with #2 = 0,481, Thus, we overestimate the birth rate, un-
derestimate survival, and explain only about half as much of
the variation as before. What happened? By adding vari-
ability in observations, it now appears that there are some
very small population sizes and some very large ones, even
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Observed population size at time ¢

T T - T T T T T T
(1] 20 a0 a0 L15] fog 120 140 1680

Observed population size at time ¢ - 1

Freure 3.7, One Monte Cardo realization of fifty data points drawn
with process and observation uncertinty. Once again, the solid line
represents the tue model (deterministic relationship).

though the true population size has not changed. The net
effect is that the population in the next time period, N,
appears to depend less on N, This is not due to a weaken-
ing of the density dependence. Rather, it is caused by the
additional source of uncertainty in the model. The job of
the ecological detective is to sort out such differences and
then arrive at the best description of nature possible.

Bootstrap Data Sets

Another use of the Monte Carlo method is to generate
“replicate”™ sets of data from one actual set of data. This is
often called a “"bootstrap” data set (Efron and Tibshirani
1991, 1993). We do it by resampling the data set with re-
placement. For example, in the discussion of coefficient of
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variation, we described a data set of masses of rodents. The
original data (in g) were [79,120,85,99,100}. A bootstrap
data set is constructed by randomly picking five “new”
masses from the original data set, with replacement. Thus,
one such bootstrap replicate might be {79,120,85,100,100}
and another might be {99,75,99,120,85}. We could use this
method to generate a large number of “replicate” data sets.
We will use the bootstrap method for both model selection
and the evaluation of confidence limits.
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