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Abstract Eating behaviours are influenced by the integration of gustatory, olfactory and
somatosensory signals, which all contribute to the perception of flavour. Although extensive research
has explored the neural correlates of taste in the gustatory cortex (GC), less is known about its
role in encoding thermal information. This study investigates the encoding of oral thermal and
chemosensory signals by GC neurons compared to the oral somatosensory cortex. In this study
we recorded the spiking activity of more than 900 GC neurons and 500 neurons from the oral
somatosensory cortex in mice allowed to freely lick small drops of gustatory stimuli or deionized
water at varying non-nociceptive temperatures. We then developed and used a Bayesian-based
analysis technique to assess neural classification scores based on spike rate and phase timing within
the lick cycle. Our results indicate that GCneurons rely predominantly on rate information, although
phase information is needed to achievemaximumaccuracy, to effectively encode both chemosensory
and thermosensory signals. GC neurons can effectively differentiate between thermal stimuli,
excelling in distinguishing both large contrasts (14 vs. 36°C) and, although less effectively, more
subtle temperature differences. Finally a direct comparison of the decoding accuracy of thermo-
sensory signals between the two cortices reveals that whereas the somatosensory cortex exhibited
higher overall accuracy, the GC still encodes significant thermosensory information. These findings
highlight the GC’s dual role in processing taste and temperature, emphasizing the importance of
considering temperature in future studies of taste processing.

(Received 18 August 2024; accepted after revision 3 January 2025; first published online 15 January 2025)
Corresponding author R. Vincis: Department of Biological Science, Programs in Neuroscience, Molecular Biophysics
and Cell and Molecular Biology, Florida State University, Tallahassee, FL, USA. Email: rvincis@fsu.edu

Key points
� Flavour perception relies on gustatory, olfactory and somatosensory integration, with the
gustatory cortex (GC) central to taste processing.

� GC neurons also respond to temperature, but the specifics of how the GC processes taste and oral
thermal stimuli remain unclear.

� The focus of this study is on the role of GC neurons in the encoding of oral thermal information,
particularly compared to the coding functions of the oral somatosensory cortex.

� We found that whereas the somatosensory cortex shows a higher classification accuracy for
distinguishing water temperature, the GC still encodes a substantial amount of thermosensory
information.

� These results emphasize the importance of including temperature as a key factor in future studies
of cortical taste coding.

Introduction

Eating behaviours are influenced by the initial sensation
and the reward experienced when eating food and
beverages. This sensation results from the integration
of intraoral gustatory, olfactory (retronasal) and
somatosensory cues that all contribute to the percept that
we know as flavour (Lemon, 2021; Samuelsen & Vincis,
2021; Small, 2012; Spence, 2015). Numerous electro-
physiological studies in behaving rodents have described
the neural correlates of one of these sensory components,
taste. Using fluid stimuli at room temperature, these
investigations revealed that gustatory information under-
goes neural computations within interconnected brain

regions, including the gustatory cortex (GC), the primary
cortical region responsible for the processing of taste
(Spector & Travers, 2005; Vincis & Fontanini, 2019). GC
neurons have exhibited time-varying patterns of activity
in response to chemosensory qualities and the hedonic
value of gustatory stimuli, which play a role in guiding
taste-related decisions (Dikecligil et al., 2020; Jezzini
et al., 2013; Katz et al., 2001; Levitan et al., 2019; Stapleton
et al., 2006). Furthermore the ability of GC neurons to
distinguish between tastes is improved when the rate and
spike time are interpreted relative to the timing of the
licks, indicating that the lick cycle is a key factor in taste
processing (Neese et al., 2022).

© 2025 The Authors. The Journal of Physiology © 2025 The Physiological Society.

 14697793, 2025, 4, D
ow

nloaded from
 https://physoc.onlinelibrary.w

iley.com
/doi/10.1113/JP287499 by Florida State U

niversity, W
iley O

nline L
ibrary on [17/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

mailto:rvincis@fsu.edu


J Physiol 603.4 Taste and temperature encoding in cortical neurons 911

Several studies indicate that GC neurons also respond
to non-gustatory components of oral stimuli (Rudenga
et al., 2010; Samuelsen & Fontanini, 2017; Samuelsen
& Vincis, 2021; Vincis & Fontanini, 2016), including
temperature, a prominent feature of the sensory properties
of food and beverages. Studies in humans and primates
(Cerf-Ducastel et al., 2001; Verhagen et al., 2004), as well
as in anaesthetized rats (Kosar et al., 1986; Yamamoto
et al., 1981), and investigations by our laboratory in awake
mice (Bouaichi et al., 2023), suggest that changes in oral
temperature, even in the absence of classical taste qualities,
modulate activity in GC neurons. In particular our
recent findings (Bouaichi et al., 2023) revealed that more
than half of the GC neurons that encode chemosensory
taste stimuli can also discriminate thermal information.
Although these data suggest that the GC is a potential key
brain region for integrating chemosensory and thermo-
sensory inputs from the oral cavity, they do not provide
a detailed analysis of its neural responses. Consequently
different aspects of the GC’s capability to process taste
and oral thermal stimuli are poorly characterized. For
example it is still unknownwhat coding strategy is used by
GC neurons in the encoding of oral thermal information,
particularly compared to the thermosensory functions of
the oral somatosensory cortex (S), which represents the
sensory input of the tongue and intraoral region (Accolla
et al., 2007; Clemens et al., 2018; Nakamura et al., 2015;
Samuelsen & Vincis, 2021).

This study aims to evaluate the role of GC neurons
in the encoding of oral thermal information and their
ability to process chemosensory taste signals at room
temperature, particularly compared to the thermo-
sensory and chemosensory coding functions of the
oral somatosensory cortex (S), which represents the
sensory input of the tongue and intraoral region (Accolla
et al., 2007; Clemens et al., 2018; Nakamura et al., 2015;
Samuelsen & Vincis, 2021). To this end we collected
recordings of spiking activity from more than 900 GC
neurons and 500 neurons in the somatosensory cortex
in mice allowed to freely lick to receive a small drop
(3 μl) of one of four liquid gustatory stimuli (sucrose,
NaCl, citric acid and quinine) at room temperature or
deionized water at one of three different non-nociceptive
temperatures (14, 25 and 36°C). Our previous study
(Bouaichi et al., 2023) indicated that the responses of
GC neurons to different temperatures of deionized water
and artificial saliva—a stimulus often used as a neutral
control in taste research—were highly similar, supporting
the use of deionized water at different temperatures as a
thermal stimulus in the absence of overt chemosensory
taste information. We then applied a Bayesian analysis to
compute classification scores for spike trains, considering
both the rate and the phase (timing of spikes within
the lick cycle) in response to various oral stimuli. Our
results indicate that GC neurons primarily rely on rate

information, with phase providing complementary input,
to effectively encode chemosensory and thermosensory
signals from the oral cavity. In addition a qualitative
evaluation of our decoding analysis showed that many
GC neurons are able to distinguish different water
temperatures. Finally a direct comparison of the decoding
accuracy of thermosensory and chemosensory signals
between theGC and the somatosensory cortex reveals that
although the somatosensory cortex exhibits higher over-
all classification accuracy, the GC contains a substantial
amount of thermosensory information.
Overall our results offer a comprehensive analysis

of the GC’s ability to encode thermal information in
addition to gustatory stimuli, highlighting its crucial
role in processing thermal cues relevant to taste. This
dual capacity emphasizes the importance of incorporating
temperature as a key factor in future studies of cortical
taste coding.

Methods

Experimental design and statistical analysis

Data acquisition. The experiments in this study were
conducted on 30 wild-type C57BL/6J adult mice (aged
10–20 weeks, comprising 16 males and 14 females). The
mice were obtained from the Jackson Laboratory and
upon arrival housed in conditions with a 12 h light–dark
cycle, with unrestricted access to food and water. The
experiments and training sessions were performed during
the light phase of this cycle. All experiments were
reviewed and approved by the Florida State University
Institutional Animal Care and Use Committee (IACUC)
under the protocol PROTO202100006. The experimental
dataset consists of 962 neurons recorded in the GC
and 529 neurons recorded in the oral somatosensory
cortex. All GC data were obtained from previously
published data (Bouaichi et al., 2023; Neese et al.,
2022), whereas recordings from the oral somatosensory
cortex were obtained from a new unpublished dataset.
For the recording in the GC, the taste dataset (529
neurons) neurons were obtained from a previously
published dataset (Bouaichi & Vincis, 2020; Neese et al.,
2022); neural activity was recorded while the mice
were allowed to freely lick to receive 3 μl of one of
the four taste stimuli (sucrose, NaCl, citric acid and
quinine) at room temperature; the temperature dataset
(433 neurons) neurons were obtained from a second pre-
viously published dataset (Bouaichi et al., 2023); neural
activity was recorded while mice were allowed to freely
lick to receive 3 μl of deionized water presented at one of
three non-nociceptive temperatures (14, 25 and 36°C). It is
important to note that the experimental settings in which
neurons were recorded across the different datasets were
identical, with the only difference being the type of stimuli

© 2025 The Authors. The Journal of Physiology © 2025 The Physiological Society.
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used: taste stimuli for the taste dataset and deionizedwater
at different temperatures for the temperature dataset.
For the recording in the oral somatosensory cortex,

mice were anaesthetized with an intraperitoneal
injection of a cocktail of ketamine (25 mg/ml) and
dexmedetomidine (0.25 mg/ml), followed by a sub-
cutaneous injection of carprofen (20mg/kg). The depth of
anaesthesia was monitored regularly by visual inspection
of breathing rate, whisker reflexes and tail reflex. Body
temperature was maintained at 35°C using a heating pad
(DC temperature control system, FHC, Bowdoin, ME,
USA).
Once a surgical plane of anaesthesia was achieved, the

animal’s head was shaved, cleaned and disinfected with
iodine solution and 70% alcohol before positioning it in a
stereotaxic plate. A first craniotomy was drilled above the
left oral somatosensory cortex on the mouse’s skull (AP
(antero-posterior): 1.1 mm, ML (medio-lateral): 3.8 mm
relative to bregma) to implant a movable bundle of eight
tetrodes and one single reference wire (Sandvik-Kanthal,
PX000004, Palm Coast, USA) with a final impedance of
200–300 kΩ for tetrodes and 20–30 kΩ for the reference
wire. A second hole was drilled on top of the visual cortex,
where a ground wire (A-M Systems, Sequim, USA,
catalogue no. 781000) was lowered ∼300 μm below the
brain surface. During surgery the tetrodes and reference
wires were lowered 0.2 mm below the cortical surface;
they were further lowered ∼200 μm before the first day of
recording and∼80 μmafter each recording session. Before
implantation tetrode wires were coated with a lipophilic
fluorescent dye (DiI, Sigma–Aldrich, Burlington, USA),
allowing us to visualize the final location of the tetrodes
at the end of each experiment. Tetrodes, ground wires
and a head screw (for the purpose of head restraint)
were cemented to the skull with dental acrylic. Animals
were allowed to recover for a week before the water
restriction regimen began, and they received additional
daily carprofen injections (for 3 days, 20 mg/kg) from
the first postoperative day. The voltage signals from
the tetrodes were captured, digitized and filtered by
bandpass (300–6000 Hz) using the Plexon OmniPlex
system at a sampling rate of 40 kHz. For automated spike
sorting Kilosort by Pachitariu et al. (2016) was used on
a workstation equipped with an NVIDIA GPU, CUDA
andMATLAB. After spike sorting Phy software facilitated
manual curation. Subsequently the quality metrics and
waveform characteristics were determined using scripts
based on SpikeInterface (Buccino et al., 2020). Only units
exhibiting an overall firing rate>0.3 Hz, a signal-to-noise
ratio >3.0 and an ISI violation rate <0.2 were considered
for further analysis. At the end of the experiment, the
mice were deeply anaesthetized for the last time and
subjected to transcardial perfusion with 30 ml of PBS and
then 30 ml of 4% paraformaldehyde (PFA). The brains of
the subjects were then removed and further fixed in PFA

for 24 h. After fixation coronal brain sections (100 μm
thick) that included the oral somatosensory cortex were
prepared using a vibratome (VT1000 S, Leica, Wetzlar,
Germany). To highlight the paths taken by the tetrode
bundles and probes, brain sections were counterstained
with Hoechst 33342 (1:5000 dilution, H3570, Thermo
Fisher, Waltham, MA, USA) using standard techniques
and then placed on glass slides. The stained sections of the
oral somatosensory cortex were examined, and images
were obtained using a fluorescence microscope.
For retrograde tracing experiments mice were

anaesthetized with an intraperitoneal injection of a
cocktail of ketamine (25 mg/ml) and dexmedetomidine
(0.25 mg/ml). The depth of anaesthesia was monitored
regularly by visual inspection of breathing rate, whisker
reflexes and tail reflex. Body temperature was maintained
at 35°C using a heating pad (DC temperature control
system, FHC, Bowdoin, USA). Once a surgical plane of
anaesthesia was achieved, the animal’s head was shaved,
cleaned and disinfected with iodine solution and 70%
alcohol before positioning it in a stereotaxic plate. Two
small craniotomies were drilled above the left GC (+1.1
mm AP, 3.8 mm ML, relative to bregma) and the left oral
somatosensory cortex (+1.1 mmAP, 3.8 mmML, relative
to bregma). A glass pipette was loaded with cholera toxin
subunit B (CTB-488, Thermo Fisher) and lowered into
the GC (2.2 mm from the brain surface). We injected
150 nl of CTB-488 at a rate of 2 nl/s using a Nanoject III
microinjection pump (Drummond Scientific, Broomall,
PA, USA). After injection we waited an additional 10
min before slowly extracting the glass pipette. A second
glass pipette was then loaded with CTB-594 (Thermo
Fisher) and lowered into the oral somatosensory cortex
(−0.8 mm from the brain surface). We then injected 150
nl of CTB-594 at a rate of 2 nl/s using a Nanoject III as
described earlier and waited an additional 10 min before
slowly extracting the glass pipette. The scalp of the mouse
was then sutured, and the animals were allowed to recover
from anaesthesia. One week after CTB injections the mice
were terminally anaesthetized and transcardially perfused
with 30 ml of PBS and then 30 ml of 4% PFA. Similar to
what we described earlier for tetrode tracks, the brains
were extracted and postfixed with PFA for 24 h, after
which coronal brain slices (100 μm thick) were sectioned
with a vibratome (VT1000 S, Leica). To visualize the
anatomical tracers brain slices were counterstained with
Hoechst 33342 (1:5000 dilution, H3570, Thermo Fisher)
using standard techniques and mounted on glass slides.
Brain sections were viewed, and images were obtained
using a fluorescence microscope.

Data pre-processing and normalization. Raw spike trains
are mathematically represented as 4000-dimensional
vectors, with one entry (either 0 or 1) per millisecond
of experimental data collection. Lick timings are also

© 2025 The Authors. The Journal of Physiology © 2025 The Physiological Society.
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J Physiol 603.4 Taste and temperature encoding in cortical neurons 913

represented as vectors of the same dimension, with entries
of either 0 or 1 reflecting the absence or presence of a lick
at each time point. Time 0 is defined as the time of the first
lick for which water is present in the spout. Only data after
this time point are used in the classification analysis.

The time between two licks, or lick interval, is a natural
frame of reference to determine the spiking phase. To help
in this we normalize the lick intervals so that all have a
normalized time duration of 200 time units. Lick inter-
vals that are longer than 200 ms are contracted and those
shorter than 200 ms are stretched. This normalization of
the lick interval, or timewarping, is done uniformly so that
the number of spikes per lick interval is not changed and
the relative timing of the spikes within a lick interval is
maintained. This is shown in Fig. 2A and B. The phase of
the first spike is≈40/200, or 0.2. The phase of the last spike
is ≈170/200, or 0.85. In our analysis we examine the first
five lick intervals starting at time 0. Therefore each spike
train vector used in the analysis contains 1000 elements:
200 for the time points within each of five normalized lick
intervals. We refer to each such vector as a processed spike
train vector.

Creating empirical rate and phase distributions.
From the processed spike train vectors, we construct
approximate phase and rate probability distributions for
each neuron that responds to each stimulus. A phase
distribution describes the timing of spikes relative to licks
in the processed spike train. To construct this we first form
the union as a multiset of the processed spike trains for
that neuron–stimulus pair to create one 1000-dimensional
vector for each pair. We convert this distribution, defined
only at discrete time points, to a continuous distribution.
We then remove the rate information by normalizing
the distribution to sum to 1, regardless of the number
of spikes considered. To construct a rate distribution we
form a histogram (with a bin size of 1) of the number of
spikes produced per trial.

Transformation to a continuous distribution is done
using a Gaussian kernel density estimator (Pedregosa
et al., 2011) as follows. The continuous function that inter-
polates our recordings for a particular neuron–stimulus
pair is

μ (x) = 1
K

K∑
i=1

1√
2πh2

exp
(

− (x − xi)2

2h2

)
,

where x ∈ [0,999] and (x1, x2, . . . , xK ) are the K data
points. For phase distributions the data are the union of all
spike times. For rate distributions the data are the values of
the spike frequency histogram. The parameter h is called
the bandwidth and is akin to a smoothing parameter – the
larger the bandwidth, the greater the smoothing. We use
h = 5 when calculating phase PDFs (probability density
functions) and h = 2 when calculating rate PDFs, using

a finer bandwidth when smoothing histograms with a
small bin size and a larger bandwidth when trying to get
a sense of the density of spiking for phase distributions.
We verified that the results were stable under a range
of bandwidth values for phase functions, so we chose
a value on the lower end of the stable range to retain
as much variability within the data as possible while
maintaining similar results. Similarly when searching for
optimal bandwidth values to use for rate functions, we
found that the results are optimal with lower bandwidth,
achieving the best classification scores overall with h = 2.
This process is shown in Fig. 2C and D. Panel C shows

the timing of spikes over all five lick intervals (black
bars). This data is used to construct a probability density
function (blue curve) using kernel density estimation.
Probability values are low because the time spans all five
lick intervals, and the number of data points (spikes),
K, is large over that long time span. Panel D shows
the construction of the spike-rate density function. The
process begins with a histogram of the number of spikes
per trial for a particular neuron–stimulus pair. These data
are then used in the kernel density estimator to generate
a smooth, continuous probability density function (blue
curve). In this case the number of data points, K, is the
number of different values of spikes per trial that occur in
the trials examined.

Bayesian classifier design

We quantify the degree to which a neuron successfully
distinguishes one stimulus from the others through
classification scores. We employ a Bayesian classification
scheme that makes use of one or both of the probability
density functions described earlier. The datasets
(processed spike trains) were first divided into training
(80%) and testing (20%) sets. The spike trains in the
training set were used to construct empirical rate and
phase distributions as described earlier. The spike trains
in the test set were used to determine the classification
score, as described earlier.
For classification based on phase distributions, each

processed spike train with N spikes in the test set is inter-
preted asN i.i.d. (independent and identically distributed)
samples (x1, . . . , xN ) from a phase distribution for one of
the stimuli, M stimuli: μP

i , i = 1, . . . ,M. To determine
the most likely stimulus (a taste or temperature) Ti, we
maximize
P(Ti|(x1, . . . , xN )) for i = 1, . . . ,M. EmployingBayes’s

theorem we obtain

P (Ti| (xi, . . . , xN )) = P ((xi, . . . , xN ) |Ti) P (Ti)∑M
j=1 P

(
(xi, . . . , xN ) |T j

)
P

(
T j

) ,

(1)

© 2025 The Authors. The Journal of Physiology © 2025 The Physiological Society.

 14697793, 2025, 4, D
ow

nloaded from
 https://physoc.onlinelibrary.w

iley.com
/doi/10.1113/JP287499 by Florida State U

niversity, W
iley O

nline L
ibrary on [17/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



914 A. N. Nash and others J Physiol 603.4

where P(T j) are the prior probabilities that the
observation is from stimulus T j. To ensure that all
stimuli are equally probable, we include an equal number
of trials per stimulus (Q) in the analysis, where Q is
the smallest number of trials recorded for any stimulus
in a given dataset. For stimuli for which more than Q
trials were performed, excesses were not included in
the analysis. Therefore, because all stimuli are equally
probable, P(T j ) = 1

M . Under the i.i.d. assumption eqn (1)
simplifies to

P(Ti| (xi, . . . , xN )) = LPi

/ M∑
j=1

LPj ,

where LPj is the likelihood,

LPj = μP
j (x1) . . . μP

j (xN ) .

A similar process is used in the case in which rate
distributions alone are used in the classification. In this
case each processed spike train is interpreted as a single
sample y from a rate distribution for one of the stimuli,
μR
i , i = 1, . . . ,M. To determine the most likely stimulus

Ti, we maximize P(Ti|y) for i = 1, . . . , M, and from
Bayes’ theorem,

P(Ti|y) = P(y|Ti)P (Ti)∑M
j=1 P(y|T j )P

(
T j

) ,

or with the i.i.d. assumption,

P
(
Ti|y

) = LRi

/ M∑
j=1

LRj ,

where LRj is the likelihood,
LRj = μR

j (y).
Finally in the case in which both rate and phase are used

in the classification, we maximize the weighted sum of the
two probabilities:

RPi = αP(Ti|y) + (1 − α) P (Ti| (x1, . . . , xN )) (2)

with weight α ∈ [0,1]. When α = 0 only the phase
information is used, and when α = 1 only the rate
information is used. The values of α between 0 and 1 use
a combination of the two and are equally weighted when
α = 0.5.
Using this approachwe obtain a valueRPi for each of the

stimuli, and the stimulus with the highest value is selected
as the one most likely to produce the spike train. This is
done for all elements of the test set, and the classification
score is the fraction of times the classification is correct.
This process is repeated 15 times for each neuron, each
with a different partition of spike trains into training and
testing sets. The classification scores are then averaged

over these 15 splits to obtain an overall classification score
for the neuron.

Support vector machine classification

To validate our Bayesian analysis classification results, we
compare them with a similar classification experiment
carried out using a support vector machine (SVM), a tool
of classical machine learning (Fan et al., 2008; Pedregosa
et al., 2011). Approximately the SVM determines the
optimal hyperplanes that separate the data into a specified
number of classes. Each of these is associated with a
stimulus, based on the labels of the data used to train
the SVM. To perform this experiment the processed
spike train vectors for every neuron–stimulus pair were
smoothed by convolving the sequence of values 0 and
1 with a Gaussian kernel (a smoothing window of 100
was used). As in Bayesian classification the processed
spike train data were divided into a training set (80%)
and a test set (20%). The training set was used to fit the
parameters of the SVM model. Using the trained model
each element of the test set was classified. The fraction
of correct classifications is then the classification score.
This sequence was repeated 15 times for each neuron,
with the same random partitions for training and testing
sets that were used in Bayesian classification. The average
classification score for a single neuron in all 15 iterations
is the final classification score for that neuron. See Neese
et al. (2022) for more details on the SVM classifier and
smoothing process.

Results

Using a Bayesian classifier to elucidate GC activity

To begin investigating how neurons in the gustatory
portion of the insular cortex encode oral information
in freely licking mice, we made extracellular recordings
using movable bundles of tetrodes or silicon probes
implanted unilaterally in theGC (Fig. 1). After habituation
to head restraint a group of mildly (1.5 ml per day)
water-deprived mice were engaged in a task in which
they had to lick a dry spout 6 times to obtain a drop
of one of four gustatory stimuli (100 mM sucrose, 50
mM NaCl, 10 mM citric acid, 0.5 mM quinine) and
water presented at room temperature. A second group
of mice, in a different session, was also trained to
receive deionized water at three different non-nociceptive
temperatures (14, 25 and 36°C). At the end of the training
(1 week), the recording session started. For the mice
included in the taste dataset (n = 12 mice), we recorded
and analysed neural activity (n = 529 neurons) only
in response to gustatory stimuli at room temperature
(Fig. 1A and B) as discussed in Bouaichi and Vincis (2020)

© 2025 The Authors. The Journal of Physiology © 2025 The Physiological Society.
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J Physiol 603.4 Taste and temperature encoding in cortical neurons 915

and Neese et al. (2022). For the mice included in the
temperature dataset (n = 18 mice), we initially recorded
neural activity evoked by taste stimuli presented at room
temperature. After this recording session we analyses the
spiking activity of each neuron. If taste-selective neurons
were detected, the tetrodes or probes were lowered
∼100 μm, and subsequent recording sessions exclusively
captured the activity evoked by deionized water at various
temperatures. As explained in Bouaichi et al. (2023), this
approach was specifically selected to provide additional
functional evidence confirming that neuron responses
to thermal stimuli were acquired from the taste cortex.
Overall for the temperature dataset, we recorded and
analysed 433 GC neurons (Fig. 1A and B; see Methods for
additional details).

To investigate the neural dynamics of GC neurons for
taste and thermal information, we employed a Bayesian
classification approach. For each neuron the spike trains
were initially divided into a training set (80% of total
trials for each stimulus) and a test set (20% of total trials
for each stimulus). The spike trains from the training
sets were then used to construct a spike timing and
a spike-rate probability distribution function for each
neuron–stimulus pair (Fig. 2), which characterizes the
response of the neuron to the different oral stimuli. For
each spike train in the test set, we determined (1) the
phase in which each spike occurred and (2) the spike rate
for the entire spike train to calculate the corresponding
probability values. Then these probability values were
combined, weighted by a factor α ∈ [0,1], where α < 0.5
places greater emphasis on phase information and α >

0.5 gives more weight to rate information. The result is a
value RPj, which quantifies the degree to which the spike
train in the test set matches the characteristic phase and

rate distributions of stimulus j in that neuron [eqn (2)].
The neural response is classified as selective to stimulus
j if the objective function RPj is greater than that of all
other stimuli. That is the classification is determined by
RPj > RPi for all i �= j and i = 1, . . . , M, where M
is the number of different stimuli for that experimental
session. The fraction of correctly classified elements in the
test set gives the classification score for that neuron. We
showed previously that a different approach, employing
SVMs, is highly effective in correctly classifying spiking
responses of neurons to a variety of oral stimuli (Neese
et al., 2022) in behaving rodents. However unlike the
Bayesian approach we used in this study, the SVMmethod
provides limited information on which specific aspects of
the spike trains contribute to the classification success. In
contrast the Bayesian approach employed here not only
offers empirical distributions for spiking phases and rates
but also allows for the assignment of different weights to
these factors during classification, thereby offering a more
detailed understanding of the underlying neural coding
mechanisms.
Although the proposed Bayesian classification

approach provides better insight into the contributions of
spike timing and rate, we recognized the need to validate
its effectiveness. Specifically for the sake of comparison,
we first compared our new Bayesian method with the
SVM approach used in the past (Neese et al., 2022)
to ensure its reliability in classifying taste and thermal
neural responses. Figure 3 shows the comparison of
classification scores between the Bayesian and SVM
approaches on the same datasets. For each GC neuron,
the training sets used to form the empirical rate and phase
distributions for the Bayesian analysis were also used
to determine the SVM parameters. The test sets were

A B

Figure 1. Taste and thermal responses in the mouse gustatory cortex
A, Schematic showing the recording set-up and a head-restrained mouse licking a spout to obtain oral stimuli.
The taste dataset includes gustatory cortex (GC) neurons recorded while animals experience 1 of 4 taste
stimuli (sucrose 0.1 M, NaCl 0.05 M, citric acid 0.01 M and quinine 0.001 M) at room temperature. The
temperature dataset includes GC neurons recorded while the animals experience deionized water at 1 of 3
non-nociceptive temperatures (14, 25 and 36°C). B, Raster plots and peristimulus time histograms (PSTHs) of
2 representative GC neurons from the taste (left) and temperature (right) dataset. [Colour figure can be viewed at
wileyonlinelibrary.com]

© 2025 The Authors. The Journal of Physiology © 2025 The Physiological Society.
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916 A. N. Nash and others J Physiol 603.4

then used to calculate the classification scores for both
methods. For the Bayesian classification ‘optimal’ values
of α = 0.875 and 0.750 were used for the taste (Fig. 3A)
and temperature (Fig. 3B) datasets, respectively, with the
rationale for these choices discussed in the next section.
The classification scores for both datasets indicate that
both methods yield comparable scores. Consequently all
subsequent analyses were performed using the Bayesian
classification approach.

Classification using rate and phase is better than
either alone

We first applied the Bayesian classifier to calculate the
classification scores for taste information in GC neurons.
Classification scores were calculated using different values
of α ranging from 0 to 1 in increments of 0.125. Previous
electrophysiological data obtained in behaving rodents
indicate that the fraction of taste-selective neurons in the
GC varies depending on multiple factors, including the
type of stimulus delivery [intraoral cannulae (IOC) or
active licking], the concentrations of the taste stimulus,
the cortical layers and the method of analysis of
stimulus-evoked spike trains (Bouaichi & Vincis, 2020;
Dikecligil et al., 2020; Jezzini et al., 2013; Katz et al.,

2002; Levitan et al., 2019). In the context of our dataset
and experimental conditions, previous analyses have
indicated that 10%–30% of GC neurons can be considered
taste selective (Bouaichi & Vincis, 2020; Neese et al.,
2022). Therefore we focused on the ‘best’ GC neurons,
specifically those with taste classification scores in the
top 20% (105 neurons). When averaging over this sub-
set of neurons, the mean classification scores ranged from
0.37 to 0.40, significantly higher than the expected score
for random guessing (Fig. 4A). The mean score for the
classification based only on phase (α = 0) was the lowest
among all α values. However although the mean score
for the classification based only on rate (α = 1) was
higher, it did not reach the maximum value, which was
achieved when both rate and phase were combined in
the classification (α = 0.875). These results confirm that
spike timing is a critical factor in taste decoding (Neese
et al., 2022) and that gustatory information is enhanced
when changes in spike rate are considered in conjunction
with temporal dynamics (Katz et al., 2001). Therefore we
used this optimal α in all subsequent taste classification
analyses unless otherwise noted.
Next we aimed to quantify the amount of oral thermal

information encoded in the GC spike trains. To do
this we applied the Bayesian classifier to calculate the
classification scores for fluid temperature using our

Figure 2. Illustration of the lick interval normalization process and calculation of empirical probability
distribution functions
A, A depiction of the timings of the licks (orange) and the neuronal spikes (red). There are 5 spikes within the
140-ms lick interval delimited by the 2 licks shown. B, The lick interval is extended to 200 ms, preserving the
number of spikes and the relative differences in the timing of the spikes. C, For the phase distribution the black
bars indicate the union of all spike times in the processed spike train vectors across all trials. The blue curve is
the probability density function obtained using kernel density estimation. D, For the rate distribution the black
bars represent a histogram showing the frequency of spike numbers per test in a population of processed spike
train vectors. The probability density function is again obtained using kernel density estimation. This example
features data from the 22 trials recorded from neuron 380 in response to sucrose. [Colour figure can be viewed
at wileyonlinelibrary.com]

© 2025 The Authors. The Journal of Physiology © 2025 The Physiological Society.
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J Physiol 603.4 Taste and temperature encoding in cortical neurons 917

temperature dataset. For a population of 433 neurons,
the mean classification scores ranged from 0.38 to 0.41,
slightly above the score of 0.33 expected for random
guessing (data not shown). When only the ‘best’ GC
neurons were considered, specifically those with taste
classification scores in the top 20% (86 neurons), themean
classification scores were substantially higher, ranging
from 0.18 to 0.23 above the expected score for random
guessing (Fig. 4B). As in the taste dataset the classification
score based on rate alone exceeded that based on
phase alone, and the optimal combination of the two
involved primarily rate, with phase also contributing to the
objective function (α = 0.750). This optimal value α was
used in all subsequent temperature classification analyses.

Although Fig. 4A and B shows that the optimal α

for the neural populations is near 0.75, indicating that
putting more weight on the spike rate than the spike
phase produces better classification, it may be that many
individual neurons in the population perform best at
lower α values. To investigate this for each neuron we
performed the classification over the full range of α ε [0,1]
and picked the α that gave the best score. Then out of this
neural population, we subsampled, considering now only
the neurons that scored in the top 20%. These subsampled
neurons were then used to construct histograms of the
optimal α values. The histogram in Fig. 4C corresponds
to taste classification with four tastants and shows a peak
at α = 0.125 and a larger peak at α = 0.875. Similarly for
the classification of three water temperatures, there was
a lower peak near α = 0 and a larger peak near α = 1
(Fig. 4D). In both cases, then, some neurons perform best
using primarily phase, with some contribution from rate,

whereas a larger fraction perform best using primarily
rate, with some contribution from phase.

Many GC neurons are highly responsive to
temperature and taste

To go beyond average classification scores, we assessed
whether the spike activity of recorded GC neurons
decodes chemosensory and thermal stimuli uniformly or
whether it more readily distinguishes certain tastes or
temperatures. To investigate this we focused on the ‘best’
GC neurons, which are, as explained earlier, those with
taste and temperature classification scores in the top 20%.
Figure 5A and B shows the results of this analysis.

Each bar’s colour coding illustrates how a neuron’s spike
train was classified (i.e. predicted stimulus, y-axis), with
the x-axis labels indicating the actual stimulus for the
spike train. In panel A, for example, more spike trains
associated with the citric acid (C) stimulus were correctly
classified as citric acid (blue region at the bottom of the
first bar) than any other stimulus. When misclassification
occurred the error rate was similar in the other three
tastants. Similar patterns were observed for NaCl (N)
and quinine (Q). Sucrose (S) had the lowest percentage
of correct classifications; the fraction of spike trains
incorrectly classified as citric acid was nearly equal to
those correctly classified as sucrose. This suggests that
the top-performing GC neurons examined were better
at distinguishing citric acid, NaCl and quinine compared
to sucrose. A similar analysis was conducted for the
temperature dataset (Fig. 5B). Spike trains in response
to deionized water at 14°C were correctly classified

Figure 3. Comparison of classification scores computed using Bayesian and SVM (support vector
machine) methods
A, The population of 529 neurons in response to 4 tastants (citric acid, NaCl, quinine and sucrose). The score for
random guessing is 0.25. The red point indicates the neuron used in Fig. 2. Points on the dashed line have the same
classification score when computed using either method. B, A different population of 433 neurons in response to
water at 3 different temperatures (14, 25 and 36°C). The score for random guessing is 0.33. Bayesian analysis scores
were computed with α = 0.875 (A) and α = 0.750 (B). [Colour figure can be viewed at wileyonlinelibrary.com]

© 2025 The Authors. The Journal of Physiology © 2025 The Physiological Society.

 14697793, 2025, 4, D
ow

nloaded from
 https://physoc.onlinelibrary.w

iley.com
/doi/10.1113/JP287499 by Florida State U

niversity, W
iley O

nline L
ibrary on [17/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



918 A. N. Nash and others J Physiol 603.4

almost 60% of the time (first bar). The most frequent
misclassification for 14°C was at 25°C (yellow region of
the first bar). The water at 25°C produced the lowest
percentage of correct classifications (second bar), with
the majority of misclassifications identifying the cool
temperature (14°C). Water at 36°C resulted in the highest
percentage of correct classifications (third bar), with the
most common misclassification also being water at 25°C
(yellow region of the last bar).
Next we compared the distribution of classification

scores for pairs of stimuli (Fig. 5C). A visual inspection of
the box plots indicates that the mean classification scores
obtained for thermal stimuli at 14 and 36°C, the two
thermal stimuli with the highest temperature contrast, are
above any other, just below 80%. One-way ANOVA tests
revealed that the classification scores were significantly
different (F = 76.88, p < 0.001). Post hoc pairwise

comparison (using the Bonferroni correction method
to adjust for multiple tests) further revealed significant
differences between the three temperature pairs tested,
confirming that each pair exhibited distinct classification
scores (Table 1). Classification scores were improved by
using the neuron-specific α values (red points in Fig. 5C),
rather than using a single α optimized over the population
(teal points), but the improvement is small. The analysis
suggests that GC neurons can effectively differentiate
between thermal stimuli, excelling in distinguishing both
large contrasts (14 vs. 36°C) and, although less effectively,
more subtle temperature differences. A similar analysis,
including ANOVA and post hoc tests, was performed on
taste stimulus pairs, with the results presented in Fig. 5D
and Table 1. Again there was a small increase in the
classification scores when neuron-specific α values were
used (purple points) rather than a single optimum α for

A B

C D

Figure 4. Bayesian-based classification that uses both rate and phase information is optimal
A, Difference between the mean taste classification scores and the random guess score (0.25). For each α only the
top 20% neurons were used in the mean classification score. The optimal α for this subpopulation is α = 0.875.
B, Difference between mean classification scores in animals responding to water at 3 different temperatures (14,
25 and 36°C) and random guessing (0.33). The analysis performed was similar to that in panel A. The optimal
weighting parameter value for the top 20% subpopulation of neurons is α = 0.750. C and D, The number of
neurons whose highest classification value appears in the top 20% [n = 105 for taste (C) and 86 for temperature
(D)] sorted into bins corresponding to which α value yields their overall highest classification value. [Colour figure
can be viewed at wileyonlinelibrary.com]

© 2025 The Authors. The Journal of Physiology © 2025 The Physiological Society.
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J Physiol 603.4 Taste and temperature encoding in cortical neurons 919

the entire population (blue points). Based on a qualitative
overview of these data, it could be tempting to speculate
that, at least within our datasets, GC neurons seem to
encode oral thermal signals more effectively than taste
information. However a quantitative assessment of this
point is not appropriate at this time; we will explore this
further in the subsequent sections.

Stimulus identification over individual lick intervals

Thus far our analysis has focused primarily on spike
trains that span five consecutive lick intervals, and the
first lick occurs when the stimulus is delivered. However
an intriguing question arises: how robustly are the
chemo- and thermosensory stimuli encoded within spike

A B

C D

Figure 5. Single neuron decoding of taste and thermal stimuli in the gustatory cortex
A, Spike train classification from the neurons that performed at the top 20% for taste in the GC (gustatory cortex)
(n = 105). The colour corresponds to the way the spike train was classified. The label on the x-axis is the actual
stimulus for the spike train. C, citric acid; N, NaCl; Q, quinine; and S, sucrose. The correct classifications are at the
bottom of each bar. The black horizontal dashed line is the expected score for random guessing. B, Spike train
classification from the neurons that performed at the top 20% for temperature in the GC (n = 86). The fraction
of correct classifications was much higher for 14 and 36°C than for 25°C. C, Comparison of classification scores
for pairs of temperatures, using neurons scoring in the top 20%. Teal shows results when selecting α = 0.75 for
the whole population than subsampling the top 20%, whereas red shows results using neuron-specific optimal
α values and selecting the best-performing 20% of the neurons. D, Comparison of classification scores for pairs
of tastes, using only neurons that performed at the top 20%. C, citric acid; N, NaCl; Q, quinine; and S, sucrose.
One-way ANOVA between taste pairs: F = 6.12, p < 0.001. Blue indicates results when selecting α = 0.875 for the
whole population than subsampling the top 20%, where purple indicates results using the neuron-specific optimal
α values and selecting the best-performing 20%. For both (C) and (D) the box plots represent the data from Q1
to Q3. The centre line in each box indicates the median score, whiskers extend to ±1.5 IQR (interquartile range),
and outliers are represented by points outside the range of the whiskers. Overlaid points show the classification
score for every neuron considered in the subset. [Colour figure can be viewed at wileyonlinelibrary.com]

© 2025 The Authors. The Journal of Physiology © 2025 The Physiological Society.
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920 A. N. Nash and others J Physiol 603.4

Table 1. The p-values of pairwise comparisons between oral stimuli using the Bonferroni correction method to adjust for multiple
testing (type I error) associated with Fig. 5C and D

14 versus 36°C 14 versus 25°C Q versus S C versus N C versus Q C versus S N versus Q

14 versus 25°C <0.001 —
25 versus 36°C <0.001 <0.001
C versus N 0.016 — — — —
C versus Q 0.01679 1 — — —
C versus S 1 <0.001 <0.001 — —
N versus Q 1 1 1 0.12378 —
N versus S 1 0.99108 1 0.52713 1

Significant p-values (p < 0.05) are indicated in red.
Abbreviations: C, citric acid; N, NaCl; Q, quinine; S, sucrose.

trains over post-stimulus lick intervals compared to the
entire five-lick duration? Does classification performance
vary significantly between individual lick intervals?
To address these questions we performed a Bayesian
classification analysis using portions of processed spike
trains that occurred during individual lick intervals
(Fig. 6). Similar to what was described earlier, this
analysis used spike trains of ‘best’ neurons for taste or
temperature classifications when considering the duration
of five licks. Figure 6A and B shows themean classification
score in the different lick intervals for the taste triplets
and temperature, respectively. A visual inspection of the
graphs reveals two main points. First, the initial lick
interval, which corresponds to the time period ∼145
ms after stimulus delivery, contains both chemosensory
and thermal information. Second, whereas temperature
classification reaches a plateau during the second lick
interval, taste classification appears to take longer to
reach its peak score, which occurs in the third lick
interval. To further investigate this trend we calculated
the classification scores for different lick intervals and
different rate/phase weighting values α (Fig. 6C). For
each combination of lick interval and α, scores for all
neurons were calculated, and the top 20% were used to
compute the means in this panel. For both taste and
temperature, although the optimal α varies somewhat
from lick interval to lick interval, the performance is best
for values of α close to but less than 1 (Fig. 6C). This
indicates that a classification that weighted heavily, but
not entirely, on the spike rate is optimal. Furthermore
whereas the classification scores for temperature beyond
the first lick interval are comparable between the α values,
those for taste stimuli are highest during the third lick
interval regardless of α (Fig. 6C). Analysis of differences
in all classification scores using the second and third
lick intervals revealed early success in the classification
of thermal stimuli compared to taste stimuli [Fig. 6D; t
test: t(9.4) = 3.39, p = 0.0073]. This suggests different
processing of thermal and chemosensory stimuli within
the GC, confirming that the timing of neural events can

contribute to the representation of oral stimuli (Lemon
& Katz, 2007) and that the somatosensory input can
be encoded earlier than the chemosensory input (Katz
et al., 2001). An important caveat to consider is that
the taste stimuli were delivered in solutions at room
temperature (∼22–23°C) and at fixed concentration.
Future studies are necessary to investigate whether and to
what extent the magnitude and lick-related time course of
taste classification vary as a function of temperature and
stimulus concentration.

Comparison of taste and thermal responses between
taste and somatosensory cortex

To summarize our findings so far, we applied a Bayesian
analysis to calculate the classification scores for GC spike
trains, accounting for both the rate and phase codes in
response to different oral thermal and gustatory stimuli.
Our results appear to indicate that the temperature of the
fluid is encoded more effectively by taste cortical neurons,
making it more prominent than taste information.
However an important caveat must be acknowledged.
Taste responses were recorded exclusively at room
temperature (ranging from 22 to 23°C). Previous work
in anaesthetized rodents has shown that temperature
can have non-linear additive or subtractive effects on
neural activity in response to some tastes (Lemon, 2017),
although no information is available for awake-behaving
animals. Thus although our results qualitatively suggest
that the GC reliably encodes oral thermal signals,
quantifying this effect compared to taste information is
currently not appropriate.
To facilitate a more accurate evaluation of oral thermal

coding in the GC, we recorded taste- and thermal-evoked
spiking activity in oral somatosensory fields as a point of
comparison (Fig. 7A). To this endwe implanted amovable
bundle of tetrodes unilaterally in the cortical fields
dorsal to the GC (Fig. 7B). Anatomical and functional
studies confirmed that the cortical area that represents
the somatosensory input of the tongue and the intra-

© 2025 The Authors. The Journal of Physiology © 2025 The Physiological Society.

 14697793, 2025, 4, D
ow

nloaded from
 https://physoc.onlinelibrary.w

iley.com
/doi/10.1113/JP287499 by Florida State U

niversity, W
iley O

nline L
ibrary on [17/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



J Physiol 603.4 Taste and temperature encoding in cortical neurons 921

oral region is located immediately dorsal to the GC
(Accolla et al., 2007; Clemens et al., 2018; Nakamura
et al., 2015; Remple et al., 2003; Samuelsen & Vincis,
2021). Our histological analysis confirmed that the oral
somatosensory fields targeted by our tetrodes received
thalamic input from the ventroposteromedial (VPM) and
not from the gustatory thalamus (VPMpc) (Fig. 7C).
Neural recordings with respect to taste and temperature
in the somatosensory fields were made under identical
conditions used to collect the two datasets in the GC
described earlier (see Methods). A total of 461 neurons
from 16 wild-type mice and 68 neurons from 7 mice
were recorded for the temperature and taste datasets,

respectively. Despite the difference in neuron count, the
taste dataset serves as an additional physiological control,
verifying the location of neurons in the somatosensory
cortical fields. Based on previous research gustatory
responses are not expected in this area (Accolla et al.,
2007; Clemens et al., 2018). Figure 7D shows the raster
plots and peristimulus time histograms (PSTHs) of three
representative neurons. A visual inspection of the plots
indicates that, whereas the neuron in the taste dataset
appears to respond similarly to all stimuli (i.e. being
modulated by the presence of the fluid irrespective of
the taste), the two neurons in the temperature dataset
each responded to thermal signals in a selective and

A B

C D

Figure 6. Classification scores based on individual lick intervals
A, Calculated as the average of scores for taste triplets. B, Based on 3 different water temperatures. Each point
represents the mean classification score from the top 20% of neurons when considering classification scores over
that particular lick interval only. C, Left panel shows the difference between mean classification score and random
guessing for the average of all taste triplets over the 5 different lick intervals across the range of α values. The
dataset from (A) is used in the analysis. The right panel shows a similar analysis but for the 3 water temperatures.
The dataset from (B) is used. D, Difference in classification scores between lick interval 3 and lick interval 2, for
taste and thermal stimuli. Each point represents the score difference for a particular value of α. The horizontal bars
are the average values. ∗p < 0.05. [Colour figure can be viewed at wileyonlinelibrary.com]

© 2025 The Authors. The Journal of Physiology © 2025 The Physiological Society.
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922 A. N. Nash and others J Physiol 603.4

temporally dynamic manner. We then used the Bayesian
analysis described earlier to calculate the average taste and
temperature classification scores for the neurons recorded
in the somatosensory oral fields. Figure 7E shows the
plots of the taste (green) and temperature (red) average
classification scores of the 50 best neurons recorded in the
GC and somatosensory cortex (S).
As expected neurons in the oral somatosensory cortex

do not reliably process gustatory information, as their
overall classification was not statistically different from
random guessing (t statistic = −1.84, p-value 0.08)
and was different from the classification score of the
GC neurons (p-value < 2−16, t statistic = −15.51).
Comparison of temperature classification between
neurons of the two cortices indicates that the oral
somatosensory cortex contains more information on oral
thermal stimuli (p-value < 2−16, t statistic = −8.39),
which is expected due to its primary function in

processing somatosensory signals from the oral cavity
(Accolla et al., 2007; Clemens et al., 2018; Nakamura et al.,
2015) (Fig. 7E). Despite the difference the GC also shows
a high classification score for oral thermal information,
highlighting its significant role in thermal processing.
Next we sought to provide a detailed assessment of the

classification performance of each thermal stimulus. To do
this we constructed confusion bar charts and analysed the
classification accuracy of neurons in the somatosensory
cortical fields for each temperature (Fig. 8A and B). For
ease of qualitative comparison, we also replotted the bar
chart for thermal decoding in the GC in Fig. 5A. The
evaluation of the confusion bar chart provides insight into
the differences in the average decoding of thermal stimuli
between the two cortices, as shown in Fig. 8. A qualitative
comparison suggests that the oral somatosensory cortex
exhibits greater reliability in distinguishing each absolute
temperature, as indicated by the approximately equal

A

D

B C

E

Figure 7. Taste and thermal responses in the mouse oral somatosensory cortex
A, Schematic showing the recording set-up and a head-restrained mouse licking a spout to obtain different oral
stimuli. B, Left: histological section showing the track (blue) of 1 tetrode bundle in the oral somatosensory field.
Blue arrow points to the tip of the tetrode. Right: schematic of the summary of tetrode tracks from the mice used
for the recordings of temperature or taste in the somatosensory cortex. C, Left: coronal section of mouse brain
showing the CTB (cholera toxin subunit B) injection site (in red, CTB-594) in the somatosensory cortex and the
gustatory cortex (in green, CTB-488) counterstained with Hoechst (in grey). Right: a coronal section showing the
location of CTB+ neurons in the somatosensory thalamus [VPM (ventroposteromedial), in red] gustatory thalamus
(VPMpc, in green). D, Raster plots and peristimulus time histograms (PSTHs) of three representative somatosensory
neurons from the taste (left) and temperature (centre and right) datasets. Trials pertaining to different oral stimuli
are grouped together (in the raster plots) and colour-coded (in both the raster plots and PSTHs). E, Plots showing the
taste (green) and temperature (red) average classification score of 50 best neurons recorded in the GC (gustatory
cortex) and somatosensory cortex (S). Black horizontal lines represent the mean, whereas the dotted horizontal
grey lines represent chance level. [Colour figure can be viewed at wileyonlinelibrary.com]

© 2025 The Authors. The Journal of Physiology © 2025 The Physiological Society.
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fraction of trials correctly classified for each stimulus
(bottom section of each bar, panel B). In contrast, as
discussed previously, the GC appears to more reliably
encode information for the two temperatures with the
greatest differences (14 and 36°C). This observation is also
confirmed by the analysis of the classification scores for
pairs of thermal stimuli using the best (20%) decoding
neurons (86 neurons for the GC and 92 neurons for
the somatosensory cortex; Fig. 8C). A two-way ANOVA
confirmed that there was a significant difference in the
classification scores between the two cortices (F-value
151.09, p < 0.001). Similar results were obtained when
the best decoding neurons were selected with a different
cut-off point (15% and 25%; F-value 113.507, p < 0.001,

and F-value 181.91, p < 0.001, respectively). Post hoc
pairwise comparisons further confirmed that whereas
both the GC and the oral somatosensory cortex neurons
show similar encoding capabilities for some temperature
pairs, neurons in the somatosensory cortex consistently
performed better at distinguishing all temperature pairs
than those in the GC, with the exception of the 25 versus
36°C pairs (Fig. 8C; Table 2).
In general our results indicate that despite the

overall higher classification accuracy observed in the
somatosensory cortex, the ability of the GC to encode
thermal information, particularly for the most distinct
temperature pairs, underscores its potential role in
integrating thermal cues relevant to gustatory processing.

A B

C

Figure 8. Classification accuracy of oral thermal signal from single neuron of the mouse oral
somatosensory and gustatory cortices
Comparing thermal responses (A) spike train classification from the neurons that performed at the top 20%
(n = 92) for temperature stimuli in the oral somatosensory cortex. Colour of each vertical bar corresponds to
the way the spike train was classified. The label on the x-axis is the actual stimulus used to evoke that group
of spike trains, and the correct classifications are at the bottom of each bar. The black dashed line represents
random guessing (33%). The fraction of correct classifications was much higher for 25°C in the oral somatosensory
cortex than in the GC. B, Fig. 5B copied here for ease of qualitative comparison. C, Comparison of classification
scores for pairs of temperature stimuli in different brain regions. Box plots represent range of the data from Q1
to Q3, with the median shown as the centre line. Whiskers extend to ±1.5 IQR (interquartile range), with outliers
represented as points outside the range of the whiskers. Overlaid points show the classification score for every
neuron considered in the subset. GC, gustatory cortex; S, oral somatosensory cortex. [Colour figure can be viewed
at wileyonlinelibrary.com]

© 2025 The Authors. The Journal of Physiology © 2025 The Physiological Society.
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924 A. N. Nash and others J Physiol 603.4

Table 2. The p-values of post hoc pairwise comparison associated with Fig. 8C

14°C/36°C:GC 14°C/25°C:GC 25°C/36°C:GC 14°C/36°C:S 14°C/25°C:S 25°C/36°C:S

14°C/36°C:GC —
14°C/25°C:GC <0.001 —
25°C/36°C:GC <0.001 <0.001 —
14°C/36°C:S 0.010 <0.001 <0.001 —
14°C/25°C:S 0.664 <0.001 <0.001 0.397 —
25°C/36°C:S <0.001 <0.001 0.208 <0.001 <0.001 —

Significant p-values (p < 0.05) are indicated in red.
Abbreviations: GC, gustatory cortex; S, sucrose.

Discussion

Experimental evidence from electrophysiological and
optical imaging studies shows that neurons in the GC
represent multimodal, non-gustatory signals experienced
before and/or during sampling (Chen et al., 2021;
Gardner & Fontanini, 2014; Livneh et al., 2017; Maier,
2017; Samuelsen & Fontanini, 2017; Samuelsen et al.,
2012; Vincis & Fontanini, 2016). Of particular relevance
are studies that have examined how neurons in the
GC respond to intraoral somatosensory characteristics,
such as temperature variations. Pioneering work in
anaesthetized rats (Kosar et al., 1986; Yamamoto et al.,
1981) and work in the primate insular/opercular cortex
(Kadohisa et al., 2005; Verhagen et al., 2004) indicates
that thermal changes in fluid solutions appear tomodulate
the activity of a subset of GC neurons. Furthermore our
recent work has shown that GC neurons were capable of
reliably responding to and discriminating a wide range
of innocuous oral temperatures of deionized water in
a mostly monotonic manner (Bouaichi et al., 2023).
Although these observations highlight the GC’s crucial
role in processing thermal signals, they leave open several
questions about its capacity to encode oral thermosensory
signals and the coding strategies involved. The aim of
this study was to evaluate the role of GC neurons in the
encoding of oral thermal information and their ability to
process chemosensory taste signals at room temperature,
particularly compared to the thermosensory and chemo-
sensory coding functions of the oral somatosensory cortex
(S), which represents the sensory input of the tongue and
intraoral region (Accolla et al., 2007; Clemens et al., 2018;
Nakamura et al., 2015; Samuelsen & Vincis, 2021). Given
the role of the GC in processing taste stimuli (Chen et al.,
2021; Fletcher et al., 2017; Katz et al., 2001; Mukherjee
et al., 2019), it could be speculated that taste-related
sensory input could inherently have a more prominent
representation within this cortical region. This would
align with intuitive – but admittedly overly simplistic
– expectations, considering the taste cortex function in
gustation. However increasing evidence of nuanced and
multifaceted involvement of the GC in the processing

of not only gustatory but also other components of oral
stimuli relevant to flavour (Bouaichi et al., 2023; De
Araujo & Simon, 2009; De Araujo et al., 2003; Maier,
2017; Rudenga et al., 2010; Samuelsen & Fontanini,
2017; Verhagen et al., 2004; Vincis & Fontanini, 2016)
introduces the intriguing possibility that temperature
information might play an equally vital role in its sensory
integration processes.
In this study we collected recordings of spiking activity

from the gustatory and somatosensory cortex in mice
allowed to freely lick to receive a small drop (3 μl) of
one of four liquid gustatory stimuli (sucrose, NaCl, citric
acid and quinine) at room temperature, or deionizedwater
at one of three different non-nociceptive temperatures
(14, 25 and 36°C). We then developed and employed
a new Bayesian-based spike train analysis method to
determine the optimal weighting of the rate and phase
information for the accurate classification of oral stimuli
by cortical neurons. In the GC our analysis revealed that
classification scores for both chemosensory and thermo-
sensory modalities were highest when most of the weight
was assigned to rate information, although incorporating
phase information was necessary to achieve maximum
classification accuracy. These results indicate that GC
neurons employ a similar strategy to encode oral stimuli
across different modalities when experienced via active
licking. As we demonstrated previously for taste (Neese
et al., 2022), rate information is clearly the dominant
factor, but the timing of spikes also plays a complementary
role in enhancing thermosensory coding.
Our analysis revealed that the GC robustly encodes

thermal information, indicating a strong neural
salience of temperature in this brain region. Using
the best-performing neurons for encoding (top 20%),
our comparisons of classification scores between different
thermosensory stimuli revealed that neuronal responses
in GC neurons can effectively differentiate between
thermal stimuli, excelling in distinguishing both large
contrasts (14 vs. 36°C) and, although less effectively,
more subtle temperature differences (Fig. 5C, left panel).
A qualitative evaluation of these results might lead to
the tempting—though not necessarily valid—deduction

© 2025 The Authors. The Journal of Physiology © 2025 The Physiological Society.
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that GC neurons encode oral thermal signals differently
than taste information. Indeed Fig. 5 suggests that GC
neurons recorded in this study exhibit a greater capacity
to distinguish between deionized water at warm and
cool temperatures, particularly at the extremes of our
temperature range (14 vs. 36°C), than between any pair
of chemosensory stimuli presented at room temperature.
However this conclusion is highly speculative at this
stage for at least two key reasons. First recent studies
show that taste responses in the GC are scattered rather
than spatially organized (Chen et al., 2021; Fletcher
et al., 2017; Levitan et al., 2019). It is possible that our
recordings were mostly from GC regions less sensitive
to taste (see, e.g. Chen et al., 2011). Our experimental
approach counters this concern to some extent. Our
dataset (Bouaichi & Vincis, 2020; Bouaichi et al., 2023;
Neese et al., 2022) includes recordings from a broad
section of the GC and captures neurons broadly tuned to
different taste qualities (Bouaichi & Vincis, 2020; Neese
et al., 2022). However there may still be variability in the
taste responses within our neural sample that could affect
the classification outcomes. Second taste responses were
recorded exclusively at room temperature (ranging from
22 to 23°C) and at a fixed concentration. Previous work
in anaesthetized rodents has shown that temperature can
have non-linear additive or subtractive effects on neural
activity in response to some taste qualities (Lemon, 2017).
Thus the outcomes of taste classification could change as
a function of the temperature and concentration at which
the taste stimulus is presented.

Our analysis also revealed that the temporal dynamics
of signal encoding in the GC for the two sensory
modalities differs, with classification accuracy of thermal
stimuli reaching a peak earlier than taste stimuli (Fig. 6).
Notwithstanding the caveats discussed earlier this result
underscores a potential fundamental difference in how the
GC processes these two types of oral signals. This finding
is closely aligned with previous research in rats, which
used IOCs to deliver taste stimuli, providing insight into
the temporal dynamics of cortical taste processing (Katz
et al., 2001). In this seminal study by Katz and colleagues,
analysis of the time courses ofGCneural responses to taste
revealed that modulation of the GC firing rate resulted
from separable processes, each corresponding to distinct
temporal epochs, with the first two representing an early
somatosensory input (i.e. the ‘touch’ evoked by squirting
the taste solution in the mouth) followed by a later
chemosensory input (represented by taste identity). Once
again future studies are necessary to investigate whether
and to what extent the lick-related time course of taste
classification varies as a function of temperature.

To better evaluate the neural relevance of thermo-
sensory decoding by neurons in the GC, we recorded
taste- and thermal-evoked spiking activity in the
somatosensory cortical fields, whose neurons play a

crucial role in the encoding and processing of fine
somatosensory discrimination (Foffani et al., 2008; Romo
et al., 2002; Staiger & Petersen, 2021). In particular
we focused on a region of the somatosensory cortical
fields, located immediately dorsally to the GC, known to
represent the somatosensory input of the tongue, and the
intraoral region (Accolla et al., 2007; Clemens et al., 2018;
Nakamura et al., 2015; Samuelsen &Vincis, 2021) (Fig. 7).
As expected neurons in the oral somatosensory cortex do
not reliably process gustatory information (Clemens et al.,
2018). However in accordance with their primary role in
processing somatosensory signals from the oral cavity,
they are capable of reliably encoding all different oral
temperatures tested. Interestingly our results revealed a
notable difference fromfindings in a recent study that used
calcium imaging to evaluate the cortical representation
of thermosensory signals from the skin. In that study
neurons in the somatosensory cortex were reported to
respond exclusively to cooling stimuli, with no response
to warming stimuli (Vestergaard et al., 2023). In contrast
our study found that all oral thermal stimuli, including
the warming temperature of 36°C, are represented and
encoded in the somatosensory cortex. The results shown
in Fig. 8 revealed that although both the GC and the
somatosensory cortex reliably encode all temperature
pairs well above chance level, the somatosensory cortex
generally outperforms the GC with the exception of
distinguishing 25 versus 36°C.
Some key questions emerge from our results. First what

functional role could thermal oral signals, encoded by
GC neurons, play in the context of sensory processing
and behavioural responses? We can safely speculate that
these oral signals are integral to flavour processing
and behavioural responses, particularly in relation to
consummatory behaviour. The GC has been implicated
in functions related to taste processing (Blonde et al.,
2015; Katz et al., 2001; Sadacca et al., 2012), taste learning
(Arieli et al., 2022; Kayyal et al., 2021; Schier et al.,
2016; Yiannakas et al., 2021), and expectation (Gardner
& Fontanini, 2014; Livneh et al., 2017; Samuelsen
et al., 2012; Vincis & Fontanini, 2016), but also in
taste-based decision making (Mukherjee et al., 2019;
Vincis et al., 2020), highlighting its role not only in
sensory processing but also inmodulating consummatory
behaviours. Therefore encoding oral thermal signals by
the GC could help improve the fidelity of food evaluation
processes, integrating temperature as a crucial parameter
in evaluating food quality and palatability (Moskowitz,
1973; Torregrossa et al., 2012; Zellner et al., 1988).
This leads to the second question: why does the GC, as

opposed to only the somatosensory cortex, appear to play
a crucial role in encoding thermal oral signals? Previous
experimental evidence may provide information. A study
in humans (Craig et al., 2000) and a more recent study
in rodents (Vestergaard et al., 2023) indicated that the

© 2025 The Authors. The Journal of Physiology © 2025 The Physiological Society.
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posterior insular cortex, a region located closely but post-
erior to the areas targeted in our recordings, functionally
represents and underlies the thermosensory perception
of the skin. This, together with our findings, points
to the possibility of a postero-anterior gradient across
the insular cortex for representing thermal information,
extending from extraoral to oral thermal signals. This
gradient could imply that the GC, located within this
continuum, is optimally positioned to integrate oral
thermal information as a component of its broader role
in sensory processing. This specialization might reflect
an evolutionary adaptation, prioritizing the GC for oral
thermal sensing due to its direct implications for feeding
and the evaluation of food stimuli, in contrast to the more
general body temperature regulation functions possibly
attributed to more posterior regions of the insular cortex.
Finally we consider the potential differences between

the gustatory and somatosensory cortices in encoding
oral thermal stimuli. One speculative distinction between
how the gustatory and somatosensory cortices encode
non-nociceptive oral thermal information might lie in
their respective roles in processing ‘gross’ versus ‘fine’
temperature differences. It is possible that the GC is
primarily responsible for encoding broad or ‘gross’
differences in oral thermal stimuli, such as differentiating
between temperatures that are cooler or warmer (i.e.
14 vs. 36°C oral stimuli in our experiments) than
the ‘resting’ oral temperature. This kind of thermal
information, potentially related to GC neurons having
a large receptive field for oral thermal stimuli, could
be integrated with gustatory signals to influence over-
all flavour perception based on temperature, potentially
enhancing or diminishing certain tastes. However the
GC may be less able to detect fine differences in
temperature, where the temperature variations are smaller
and closer to the normal oral temperature range. This
finer discrimination could instead be the domain of
the somatosensory oral cortex, which is well suited for
fine-tuned tactile stimulus discrimination (Foffani et al.,
2008; Romo et al., 2002; Staiger & Petersen, 2021),
that might lead to including small receptive fields and
precise temperature detection. In this context whereas
the GC might primarily handle broad thermal cues to
adjust flavour perception, the somatosensory oral cortex
could be tuned more to detect and process fine thermal
differences, ensuring amore detailed and accurate thermal
perception that complements the gustatory experience.
Moreover it is important to consider that these two
cortices are likely to interact and should not be viewed
as completely independent in their functions. Reciprocal
cortico-cortical projections between the GC and the oral
somatosensory cortex (Shi & Cassell, 1998) suggest that
they work together, likely integrating broad and fine
thermal cues to produce a cohesive perception of oral
temperature, a critical somatosensory signal and a flavour

component. Future studies will be crucial to further
elucidate the specific contributions of these two cortices
to thermal processing, providing a clearer understanding
of how they collaborate to shape sensory perception.
Overall our findings highlight that GC neurons are

not limited to processing taste information; they also
play a significant role in encoding thermal signals
from the oral cavity. This dual capacity is particularly
relevant compared to the encoding observed in the
oral somatosensory cortex. These results suggest that
temperature should be considered a critical dimension
in future studies of cortical taste coding, as it can sub-
stantially affect the cortical coding of gustatory stimuli
and refine our understanding of the role of the GC in
shaping a nuanced perception of flavour.
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