Cellular and Organismal Physiology
-
P. Bryant Chase
Biomechanics of cardiac and skeletal muscle. -
Hongchang Cui
Cell fate specification and reprogramming in plants; evolutionary and developmental biology; plant-environment interaction; genomics and epigenomics; proteomics; molecular genetics. -
Debra Fadool
Structure and Function of Ion Channel Proteins; Signal Transduction and Neuromodulation by Phosphorylation; Impact of Obesity and Diabetes mellitus on Olfactory and Sensory Processes -
Thomas A. Houpt
Molecular neurobiology of learning and memory in food intake; conditioned taste aversion.
-
James Jordan
Epigenetic regulation of metabolism in health and disease. -
Steven Lenhert
Biological membranes; cell-substrate interactions; bionanotechnology. -
Amy Webster
Using C. elegans as a model, we are interested in how differences in gene expression and chromatin can both cause and predict phenotypic differences across individuals, how these differences interact with genetic and environmental variation, and how heritable epigenetic effects may shape populations on short and long timescales.
Cellular and organismal physiology focuses on the normal vital processes of organisms. Research is directed at identifying biochemical, biophysical, molecular, genetic, and behavioral correlates of normal functioning at the subcellular, cellular, or whole-organism level. Examples of research by this group include the study of muscle and nonmuscle motility systems (e.g. muscle energetics, structure/function of cytoskeletal proteins), cellular enzymatic processes (e.g. cellular energy metabolism, selective enzymatic oxidation of fatty acids), membrane protein trafficking, and stomatal-aperture regulation. Clarification of such processes provides insight into both normal physiology and host mechanisms that protect against pathologic states. For example, cell motility plays an important role in the defense against tumor metastasis, and cellular enzymatic processes include compensatory mechanisms for responding to oxygen deprivation. Other research is directed at clarifying means by which cells communicate. Examples include research on ion channels, signal transduction, synaptic transmission, and the regulation of hormone secretion. Several investigators are investigating aspects of sensory systems, including neural encoding and integration of chemoreception, synaptic transmission in the olfactory bulb, and molecular, genetic, and behavioral correlates of taste aversion.